State and prove the inclusion-exclusion principle by induction.

Proof:

We set P(n) P ( n ) to be the number of element for the union of n n exact sets.We make the sets to be A1,A2,A3, distinguished by different symbols.

BASIS STEP:

P(1)=|A| P ( 1 ) = | A |
P(2)=|AB|=|A|+|B||AB| P ( 2 ) = | A ∪ B | = | A | + | B | − | A ∩ B |

INDUCTIVE STEP:

For n>2 n > 2
We assume that n1 n − 1 is true, which means

P(n1)=|i=1n1Ai|=i=1n1(1)i11b1<...<bin1|j=1iAbj| P ( n − 1 ) = | ⋃ i = 1 n − 1 A i | = ∑ i = 1 n − 1 ( − 1 ) i − 1 ∑ 1 ≤ b 1 < . . . < b i ≤ n − 1 | ⋂ j = 1 i A b j |

For n n , we have
|i=1nAi|=|(i=1n1Ai)An|=|i=1n1Ai|+|An||(i=1n1Ai)An|=|i=1n1Ai|+|An||i=1n1(AiAn)|=i=1n|Ai|+i=2n1(1)i11b1<...<bin1|j=1iAbj|+i=2n1(1)i11b1<...<bin1|j=1iAbjAn|+(1)n1|i=1nAi|=i=1n|Ai|+i=2n1(1)i11b1<...<bin|j=1iAbj|+(1)n1|i=1nAi|=i=1n(1)i11b1<...<bin|j=1iAbj|

So it’s proofed.

P(n)=|i=1nAi|=i=1n(1)i11b1<...<bin|j=1iAbj| P ( n ) = | ⋃ i = 1 n A i | = ∑ i = 1 n ( − 1 ) i − 1 ∑ 1 ≤ b 1 < . . . < b i ≤ n | ⋂ j = 1 i A b j |

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值