欧拉降幂公式与证明

欧拉降幂公式与证明
转载自D-Tesla

欧拉降幂公式
A K ≡ A K % ϕ ( m ) + ϕ ( m ) (   m o d   m )    K > ϕ ( m ) A^K\equiv A^{K \%\phi(m) +\phi(m)}(\ mod\ m)\qquad \; K > \phi(m) AKAK%ϕ(m)+ϕ(m)( mod m)K>ϕ(m)
证明
今天在牛客多校的群里看一个数学大佬写的证明,不过是拍照,我决定动手自己写一下

A K ≡ A K % ϕ ( m ) + ϕ ( m ) (   m o d   m )   K > ϕ ( m ) ( 1 ) A^K\equiv A^{K \%\phi(m) +\phi(m)}(\ mod\ m)\qquad \ K > \phi(m)\quad(1) AKAK%ϕ(m)+ϕ(m)( mod m) K>ϕ(m)(1)
证明如下
1 若 ( A , m ) = 1 (A,m)=1 (A,m)=1,根据欧拉定理 A ϕ ( m ) ≡ 1 ( m o d   m ) A^{\phi(m)} \equiv 1 ( mod\ m) Aϕ(m)1(mod m),即可轻易得证
2 若 ( A , m ) ≠ 1 (A,m) \not = 1 (A,m)=1,证明如下
K = a ∗ ϕ ( m ) + c K = a*\phi(m) + c K=aϕ(m)+c a ≥ 1 , 0 ≤ c < ϕ ( m ) a \ge 1, 0\le c < \phi(m) a1,0c<ϕ(m)
那么欧拉降幂公式就是
A K ≡ A a ∗ ϕ ( m ) + c ≡ A ϕ ( m ) + c (   m o d   m ) ( 2 ) A^K \equiv A^{ a*\phi(m) + c} \equiv A^{\phi(m)+c}(\ mod\ m)\quad{(2)} AKAaϕ(m)+cAϕ(m)+c( mod m)(2)

即 证
A a ∗ ϕ ( m ) ≡ A ϕ ( m ) ( m o d   m ) A^{a*\phi(m)} \equiv A^{\phi(m)}( mod\ m) Aaϕ(m)Aϕ(m)(mod m)

即 证
A 2 ∗ ϕ ( m ) ≡ A ϕ ( m ) ( m o d   m ) A^{2*\phi(m)} \equiv A^{\phi(m)}( mod\ m) A2ϕ(m)Aϕ(m)(mod m)

移项
A ϕ ( m ) ( A ϕ ( m ) − 1 ) ≡ 0 ( m o d   m ) A^{\phi(m)}(A^{\phi(m)}-1) \equiv 0 ( mod\ m) Aϕ(m)(Aϕ(m)1)0(mod m)

即证
m ∣ A ϕ ( m ) ( A ϕ ( m ) − 1 ) ( 3 ) m | A^{\phi(m)}(A^{\phi(m)}-1) \quad {(3)} mAϕ(m)(Aϕ(m)1)(3)
若有
( m ( m , A ϕ ( m ) ) , A ) = 1 ( 4 ) (\frac{m}{(m,A^{\phi(m)})} , A)= 1 \quad{(4)} ((m,Aϕ(m))m,A)=1(4)
根据欧拉定理
A ϕ ( m ) ≡ A k ∗ ϕ ( m ( m , A ϕ ( m ) ) ) ≡ ( A ϕ ( m ( m , A ϕ ( m ) ) ) ) k ≡ 1 ( m o d   ( m ( m , A ϕ ( m ) ) ) A^{\phi(m)} \equiv A^{k*\phi(\frac{m}{ {(m,A^{\phi(m)})}})}\equiv {(A^{\phi(\frac{m}{ {(m,A^{\phi(m)})}})})}^k \equiv 1 ( mod\ (\frac{m}{(m,A^{\phi(m)})}) Aϕ(m)Akϕ((m,Aϕ(m))m)(Aϕ((m,Aϕ(m))m))k1(mod ((m,Aϕ(m))m)
其中 k ≥ 1 k \ge 1 k1
移项即得 m ( m , A ϕ ( m ) ) ∣ ( A ϕ ( m ) − 1 ) \frac{m}{(m,A^{\phi(m)})}| (A^{\phi(m) }- 1) (m,Aϕ(m))m(Aϕ(m)1)
同时乘 ( m , A ϕ ( m ) ) {(m,A^{\phi(m)})} (m,Aϕ(m))
m ∣ ( m , A ϕ ( m ) ) ∗ ( A ϕ ( m ) − 1 ) m | {(m,A^{\phi(m)})}*(A^{\phi(m)}-1) m(m,Aϕ(m))(Aϕ(m)1)
m ∣ A ϕ ( m ) ( A ϕ ( m ) − 1 ) m | A^{\phi(m)}(A^{\phi(m)}-1) mAϕ(m)(Aϕ(m)1)
就是 式 3

所以证明 式子 4
( m ( m , A ϕ ( m ) ) , A ) = 1 (\frac{m}{(m,A^{\phi(m)})} , A)= 1 ((m,Aϕ(m))m,A)=1
就好了
进行素因子分解
A = p 1 a 1 ∗ p 2 a 2 ∗ . . . . ∗ p t 1 a t 1 ∗ q 1 b 1 ∗ q 2 b 2 ∗ . . . ∗ q t 2 b t 2 A = p^{a_1}_1*p^{a_2}_2*....*p^{a_{t1}}_{t1} * q^{b_1}_1* q^{b_2}_2*...* q^{b_{t2}}_{t2} A=p1a1p2a2....pt1at1q1b1q2b2...qt2bt2

m = p 1 c 1 ∗ p 2 c 2 ∗ . . . . ∗ p t 1 c t 1 ∗ r 1 d 1 ∗ r 2 d 2 ∗ . . . ∗ r t 3 d t 3 3 m = p^{c_1}_1*p^{c_2}_2*....*p^{c_{t1}}_{t1} * r^{d_1}_1* r^{d_2}_2*...* r^{d_{t3}}_{t3}3 m=p1c1p2c2....pt1ct1r1d1r2d2...rt3dt33

( A , m ) = p 1 m i n ( a 1 , c 1 ) ∗ p 2 m i n ( a 2 , c 2 ) ∗ . . . . ∗ p t 1 m i n ( a t 1 , c t 1 ) (A,m) = p^{min(a_1,c_1)}_1*p^{min(a_2,c_2)}_2*....*p^{{min(a_{t1},c_{t1})}}_{t1} (A,m)=p1min(a1,c1)p2min(a2,c2)....pt1min(at1,ct1)

( A ϕ ( m ) , m ) = p 1 m i n ( a 1 ∗ ϕ ( m ) , c 1 ) ∗ p 2 m i n ( a 2 ∗ ϕ ( m ) , c 2 ) ∗ . . . . ∗ p t 1 m i n ( a t 1 ∗ ϕ ( m ) , c t 1 ) (A^{\phi(m)},m) = p^{min(a_1*\phi(m),c_1)}_1*p^{min(a_2*\phi(m),c_2)}_2*....*p^{{min(a_{t1}*\phi(m),c_{t1})}}_{t1} (Aϕ(m),m)=p1min(a1ϕ(m),c1)p2min(a2ϕ(m),c2)....pt1min(at1ϕ(m),ct1)

欧拉函数 ϕ ( m ) = p 1 c 1 − 1 ∗ p 2 c 2 − 1 ∗ . . . . ∗ p t 1 c t 1 − 1 ( p 1 − 1 ) ∗ ( p 2 − 1 ) ∗ . . . . ∗ ( p t 1 − 1 ) \phi(m) = p_1^{c_1-1}*p_2^{c_2-1}*....*p_{t1}^{c_{t1}-1}(p_1-1)*(p_2-1)*....* (p_{t1}-1) ϕ(m)=p1c11p2c21....pt1ct11(p11)(p21)....(pt11)
a i ∗ ϕ ( m ) ≥ a i ∗ p i c i − 1 ∗ ( p i − 1 ) ≥ p i c i − 1 ∗ ( p i − 1 ) ≥ p i c i − 1 a_i*\phi(m)\ge a_i*p_i^{c_i-1}*(p_i-1) \ge p_i^{c_i-1}*(p_i-1)\ge p_i^{c_i-1} aiϕ(m)aipici1(pi1)pici1(pi1)pici1
证明
p i c i − 1 ≥ c i ( 6 ) p_i^{c_i-1} \ge c_i \quad{(6)} pici1ci(6)
c i = 1 c_i = 1 ci=1 ,成立

f ( x ) = l n ( x ) x − 1 f(x) = \frac{ln(x)}{x-1} f(x)=x1ln(x)
[ 3 , ∞ ] [3,\infty] [3,] 单调减\
又有
f ( 2 ) = l n 2 < 2 ≤ p i f(2) = ln2 < 2 \le p_i f(2)=ln2<2pi

f ( 3 ) = l n 3 / 2 < 2 ≤ p i f(3) = ln3/2 < 2\le p_i f(3)=ln3/2<2pi

于是有 式子6 成立
于是有
( A ϕ ( m ) , m ) = p 1 m i n ( a 1 ∗ ϕ ( m ) , c 1 ) ∗ p 2 m i n ( a 2 ∗ ϕ ( m ) , c 2 ) ∗ . . . . ∗ p t 1 m i n ( a t 1 ∗ ϕ ( m ) , c t 1 ) = p 1 c 1 ∗ p 2 c 2 ∗ . . . . ∗ p t 1 c t 1 (A^{\phi(m)},m) = p^{min(a_1*\phi(m),c_1)}_1*p^{min(a_2*\phi(m),c_2)}_2*....*p^{{min(a_{t1}*\phi(m),c_{t1})}}_{t1} = p^{c_1}_1*p^{c_2}_2*....*p^{c_{t1}}_{t1} (Aϕ(m),m)=p1min(a1ϕ(m),c1)p2min(a2ϕ(m),c2)....pt1min(at1ϕ(m),ct1)=p1c1p2c2....pt1ct1

m ( A ϕ ( m ) , m ) = q 1 b 1 ∗ q 2 b 2 ∗ . . . ∗ q t 2 b t 2 \frac{m}{(A^{\phi(m)},m)} = q^{b_1}_1* q^{b_2}_2*...* q^{b_{t2}}_{t2} (Aϕ(m),m)m=q1b1q2b2...qt2bt2

式子 4
( m ( m , A ϕ ( m ) ) , A ) = 1 (\frac{m}{(m,A^{\phi(m)})} , A)= 1 ((m,Aϕ(m))m,A)=1

得证
式子 3
m ∣ A ϕ ( m ) ( A ϕ ( m ) − 1 ) ( 3 ) m | A^{\phi(m)}(A^{\phi(m)}-1) \quad{(3)} mAϕ(m)(Aϕ(m)1)(3)
得证
式子 2
A K ≡ A a ∗ ϕ ( m ) + c ≡ A ϕ ( m ) + c (   m o d   m ) ( 2 ) A^K \equiv A^{ a*\phi(m) + c} \equiv A^{\phi(m)+c}(\ mod\ m)\quad{(2)} AKAaϕ(m)+cAϕ(m)+c( mod m)(2)
得证
欧拉降幂公式得证
A K ≡ A K % ϕ ( m ) + ϕ ( m ) (   m o d   m )    K > ϕ ( m ) ( 1 ) A^K\equiv A^{K \%\phi(m) +\phi(m)}(\ mod\ m)\qquad \; K > \phi(m) {(1)} AKAK%ϕ(m)+ϕ(m)( mod m)K>ϕ(m)(1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值