目录
一、概念
Trie(字典树):顾名思义就是一个像字典一样的树。
二、图示说明
如图1所示,idx是每一个结点的编号,每个结点指向下一个结点的路径都代表一个字符c
三、操作实现
1.字符串插入
如图2,图3所示,将一个字符串"c3c3"插入trie中,第1个字符c3的边已经有了,而第二个字符c3第边需要创建,故创建idx结点,由上一个字符c3指向的结点来指向该结点。又因为该结点是插入字符串的最后一个字符所指的结点,所以使该idx结点所对应统计个数加一,代表该字符串个数加一。
int son[N][26]; ///存储每个字符指向的结点
int cnt[N]; ///存储每个字符串的个数
int idx; ///结点编号
void insert_opm(string str) {
int p = 0; ///存储每个字符指向的结点
for (int i = 0;str[i]; i++) {
int x = str[i] - 'a';
///当字符串的某个字符不存在时,创建一个新结点,让该字符指向该结点
if (!son[p][x]) son[p][x] = ++idx;
p = son[p][x]; ///让p等于当前字符指向的结点
}
cnt[p]++; ///插入字符串的个数加一,以字符串的最后一个字符所指向的结点做标记
}
2.字符串查询
int query_opm(string str) {
int p = 0;
for (int i = 0;str[i]; i++) {
int x = str[i] - 'a';
///当该字符串的第i个字符所对应的结点不存在时,则说明该字符串不存在返回0
if (!son[p][x]) return 0;
p = son[p][x];
}
return cnt[p]; ///否则返回该字符串的数量
}
四、例题说明
1.统计字符串
a.题目描述
题目来源:acwing
维护一个字符串集合,支持两种操作:
I x
向集合中插入一个字符串 x;Q x
询问一个字符串在集合中出现了多少次。
共有 NN 个操作,输入的字符串总长度不超过 1e5,字符串仅包含小写英文字母。
输入格式
第一行包含整数 N,表示操作数。
接下来 N 行,每行包含一个操作指令,指令为 I x
或 Q x
中的一种。
输出格式
对于每个询问指令 Q x
,都要输出一个整数作为结果,表示 x 在集合中出现的次数。
每个结果占一行。
数据范围
1≤N≤2∗1e4
输入样例:
5
I abc
Q abc
Q ab
I ab
Q ab
输出样例:
1
0
1
b.解题思路
思路:将字符串插入到字典树当中,然后查找字符串
c.代码实现
#include<iostream>
using namespace std;
const int N = 1e5 + 10;
int son[N][26]; ///存储每个字符指向的结点
int cnt[N]; ///存储每个字符串的个数
int idx; ///结点编号
int n;
void insert_opm(string str) {
int p = 0; ///存储每个字符指向的结点
for (int i = 0;str[i]; i++) {
int x = str[i] - 'a';
///当字符串的某个字符不存在时,创建一个新结点,让该字符指向该结点
if (!son[p][x]) son[p][x] = ++idx;
p = son[p][x]; ///让p等于当前字符指向的结点
}
cnt[p]++; ///插入字符串的个数加一,以字符串的最后一个字符所指向的结点做标记
}
int query_opm(string str) {
int p = 0;
for (int i = 0;str[i]; i++) {
int x = str[i] - 'a';
///当该字符串的第i个字符所对应的结点不存在时,则说明该字符串不存在返回0
if (!son[p][x]) return 0;
p = son[p][x];
}
return cnt[p]; ///否则返回该字符串的数量
}
int main() {
cin >> n;
while (n--) {
char op;
cin >> op;
string opm;
if (op == 'I') {
cin >> opm;
insert_opm(opm);
}
else {
cin >> opm;
cout << query_opm(opm) << endl;
}
}
return 0;
}
2.最大异或值查找
a.题目描述
题目来源:acwing
在给定的 N 个整数 A1,A2……AN 中选出两个进行 xor(异或)运算,得到的结果最大是多少?
输入格式
第一行输入一个整数 N。
第二行输入 N 个整数 A1~AN。
输出格式
输出一个整数表示答案。
数据范围
1≤N≤1e5,
0≤Ai<
输入样例:
3
1 2 3
输出样例:
3
b.解题思路
思路:将每一个数存入字典树中,然后将每一个数与另一个数进行异或运算后得到的最大值找出来,不断比较最大值,最后输出这个最大值。而这另一个进行异或运算后得最大值的数,其二进制表示的每一位数都尽可能与其配对的数相反。
c.代码实现
#include<iostream>
using namespace std;
const int N=1e5+10,M=3e6;
int son[M][2],idx;
int n;
int a[N];
void insert_a(int x){
int p=0;
for(int i=30;i>=0;i--){
int &s=son[p][x>>i&1];
if(!s) s=++idx;
p=s;
}
}
int query(int x){
int p=0;
int res=0;
for(int i=30;i>=0;i--){
int t=x>>i&1;
if(son[p][!t]){ ///当x的第i为二进制数的相反数存在,则将res的这一位数改为这个相反数
res+=1<<i;
p=son[p][!t];
}
else p=son[p][t];
}
return res;
}
int main(){
cin >>n;
for(int i=0;i<n;i++){
cin >>a[i];
insert_a(a[i]);
}
int res=-1;
for(int i=0;i<n;i++){
res=max(res,query(a[i]));
}
cout <<res <<endl;
return 0;
}