文章目录
B. Permutations & Primes
问题建模
给定一个数n,要求构建一个1~n的排列,且该排列的任意子区间取MEX为素数的个数最多。(MEX为为集合内未出现的最小正整数)
问题分析
1.分析什么情况下取MEX才会有素数
因为MEX是取最小未出现正整数的,则当集合内没有1时,MEX取得的数必为1,而1不是素数,所以若要取MEX得到素数,则区间内必须含有1。
2.1放置的位置
1的位置影响了最终子区间取MEX为素数的个数,设1的位置为p,则区间l<=p<=r为可能有用的区间,要使得这样的区间尽可能多,且缺失的最小正数为素数的区间也尽可能多,通过计算p左右区间位置产生的区间数,可以证明将1放在中间位置 。
3.素数的选择和放置的位置
为了使得这些区间尽可能多的产生素数,也就是让最小的素数尽可能里这些区间远一点,则可以考虑将两个最小的素数,2和3放在左右两边,这样仅有l=1,r=n时,不会产生素数,其余有用区间都会产生素数,而将其他素数替换不会更优,故该放置方法可以得到最大值。
4.代码
#include<bits/stdc++.h>
#define x first
#define y second
using namespace std;
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> PII;
const int N=2e5+10,INF=0x3f3f3f3f;
void solve(){
int n;
cin >>n;
if(n==1) cout <<1 <<"\n";
else if(n==2) cout <<"2 1" <<"\n";
else{
int c=4;
for(int i=1;i<=n;i++){
if(i==1) cout <<2 <<" ";
else if(i==ceil(n*1.0/2)) cout <<1 <<" ";
else if(i==n) cout <<3 <<" ";
else cout <<c++ <<" ";
}
cout <<"\n";
}
}
int main() {
int t=1;
cin >>t;
while (t--) solve();
return 0;
}
C. Particles
问题建模
给定n个元素,每次选择一个元素进行消除,消除后该元素左右两边的元素将会合并成一个新的元素,该新的元素的值为这两个元素值之和,其余元素则会填充空隙位置,问通过若干次操作后,最后仅剩一个元素的情况下,该元素的最大值为多少
问题分析
1.分析变与不变
删除某一个元素后,使其相邻元素合成为了一个新元素,而其余元素填充空隙,则对于其余元素来说,其相对于未改变元素距离的奇偶性未变,也就是说每一次操作后,要么不变要么与所选元素异性的元素进行合并,则执行操作实际上是在让同性元素进行合并,为了得到最终剩余元素的最大值,我们可以分奇偶累加同性元素中大于0的元素最后取最大值,由于累加的是大于0的元素,则当全部元素为负数时,取所有元素的最大值。
2.代码
///普通做法
#include<bits/stdc++.h>
#define x first
#define y second
#define C(i) str[0][i]!=str[1][i]
using namespace std;
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> PII;
const int N=2e5+10,INF=0x3f3f3f3f;
int a[N];
void solve(){
int n;
cin >>n;
for(int i=0;i<n;i++) scanf("%d",&a[i]);
LL val1=0,val2=0;
int maxval=-1e9;
bool t=false;
for(int i=0;i<n;i++){
if(i%2) val1+=max(a[i],0);
else val2+=max(a[i],0);
if(a[i]>=0) t=true;
maxval=max(maxval,a[i]);
}
cout <<(t?max(val1,val2):maxval) <<"\n";
}
int main() {
int t=1;
cin >>t;
while (t--) solve();
return 0;
}
///DP
#include<bits/stdc++.h>
#define x first
#define y second
using namespace std;
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> PII;
const int N=2e5+10,INF=0x3f3f3f3f;
int a[N];
LL dp[N];
void solve(){
int n;
cin >>n;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
dp[1]=a[1];
dp[2]=a[2];
if(n==1) cout <<dp[1] <<"\n";
else {
for(int i=3;i<=n;i++){
dp[i]=max(dp[i-2]+max(0,a[i]),(LL)a[i]);
}
cout<<max(dp[n],dp[n-1]) <<"\n";
}
}
int main() {
int t=1;
cin >>t;
while (t--) solve();
return 0;
}