Codeforces Round 884 (Div. 1 + Div. 2)BC题解

文章介绍了两个问题的解决方案。第一个问题是构建1到n的排列,使得子区间的MEX(最小未出现正整数)为素数的个数最多,通过分析得出将1放在中间,2和3放在两端可以最大化素数个数。第二个问题是元素消除后左右合并的问题,通过累加奇偶位置的正元素取最大值来确定最后元素的最大可能值。
摘要由CSDN通过智能技术生成

B. Permutations & Primes

在这里插入图片描述在这里插入图片描述

问题建模

给定一个数n,要求构建一个1~n的排列,且该排列的任意子区间取MEX为素数的个数最多。(MEX为为集合内未出现的最小正整数)

问题分析

1.分析什么情况下取MEX才会有素数

因为MEX是取最小未出现正整数的,则当集合内没有1时,MEX取得的数必为1,而1不是素数,所以若要取MEX得到素数,则区间内必须含有1。

2.1放置的位置

1的位置影响了最终子区间取MEX为素数的个数,设1的位置为p,则区间l<=p<=r为可能有用的区间,要使得这样的区间尽可能多,且缺失的最小正数为素数的区间也尽可能多,通过计算p左右区间位置产生的区间数,可以证明将1放在中间位置 。

3.素数的选择和放置的位置

为了使得这些区间尽可能多的产生素数,也就是让最小的素数尽可能里这些区间远一点,则可以考虑将两个最小的素数,2和3放在左右两边,这样仅有l=1,r=n时,不会产生素数,其余有用区间都会产生素数,而将其他素数替换不会更优,故该放置方法可以得到最大值。

4.代码

#include<bits/stdc++.h>

#define x first
#define y second
using namespace std;
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> PII;
const int N=2e5+10,INF=0x3f3f3f3f;

void solve(){
    int n;
    cin >>n;
    if(n==1)    cout <<1 <<"\n";
    else if(n==2)   cout <<"2 1" <<"\n";
    else{
        int c=4;
        for(int i=1;i<=n;i++){
            if(i==1)    cout <<2 <<" ";
            else if(i==ceil(n*1.0/2)) cout <<1 <<" ";
            else if(i==n)   cout <<3 <<" ";
            else cout <<c++ <<" ";
        }
        cout <<"\n";
    }
}

int main() {
    int t=1;
    cin >>t;
    while (t--)  solve();
    return 0;
}

C. Particles

在这里插入图片描述在这里插入图片描述

问题建模

给定n个元素,每次选择一个元素进行消除,消除后该元素左右两边的元素将会合并成一个新的元素,该新的元素的值为这两个元素值之和,其余元素则会填充空隙位置,问通过若干次操作后,最后仅剩一个元素的情况下,该元素的最大值为多少

问题分析

1.分析变与不变

删除某一个元素后,使其相邻元素合成为了一个新元素,而其余元素填充空隙,则对于其余元素来说,其相对于未改变元素距离的奇偶性未变,也就是说每一次操作后,要么不变要么与所选元素异性的元素进行合并,则执行操作实际上是在让同性元素进行合并,为了得到最终剩余元素的最大值,我们可以分奇偶累加同性元素中大于0的元素最后取最大值,由于累加的是大于0的元素,则当全部元素为负数时,取所有元素的最大值。

2.代码

///普通做法
#include<bits/stdc++.h>

#define x first
#define y second
#define C(i) str[0][i]!=str[1][i]
using namespace std;
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> PII;
const int N=2e5+10,INF=0x3f3f3f3f;
int a[N];

void solve(){
    int n;
    cin >>n;
    for(int i=0;i<n;i++)    scanf("%d",&a[i]);
    LL val1=0,val2=0;
    int maxval=-1e9;
    bool t=false;
    for(int i=0;i<n;i++){
        if(i%2) val1+=max(a[i],0);
        else val2+=max(a[i],0);
        if(a[i]>=0) t=true;
        maxval=max(maxval,a[i]);
    }    

    cout <<(t?max(val1,val2):maxval) <<"\n";
}

int main() {
    int t=1;
    cin >>t;
    while (t--)  solve();
    return 0;
}
///DP
#include<bits/stdc++.h>

#define x first
#define y second
using namespace std;
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> PII;
const int N=2e5+10,INF=0x3f3f3f3f;
int a[N];
LL dp[N];

void solve(){
    int n;
    cin >>n;
    for(int i=1;i<=n;i++)    scanf("%d",&a[i]);
    dp[1]=a[1];
    dp[2]=a[2];
    if(n==1)    cout <<dp[1] <<"\n";
    else {
        for(int i=3;i<=n;i++){
            dp[i]=max(dp[i-2]+max(0,a[i]),(LL)a[i]);
        }
        cout<<max(dp[n],dp[n-1]) <<"\n";
    }
}

int main() {
    int t=1;
    cin >>t;
    while (t--)  solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值