为AI聊天工具添加一个知识系统 之116 详细设计之57 思维导图及观察者效应

本文要点

要点

结论是一个 由卷积神经网络支撑的 概念整体的全景思维导图。具体如下:

三“成”

  • As哈希表:“组成” 数据层-代表物理层Independent。主客位的 不变间位-物理代表服务器 Proxy Server;
  • Case键值对:“构成”服务层- 面向应用层Relative 。主仆人的 应变线人-心理代理服务 Agent Service ;
  • Has哈斯图:“形成” 本征层-充当传输层Mediating 。主从站的 随变转站  生理中介代理人Mediation Servo。

三“成”分别的“要”“法”: 推理式Deduction关系( “eager”规范图), 生成式Generation构造(“give”规范图),衍生式 Derivation 范畴(“easy”规范图)。

说明:

  • 隐藏  实体自身的三种性质nature (Independent/Relative/Mediating。决策者 视角的“Nature”)
  • 并悬置 句号后的 利益相关属性Property(参与者参与实体的方式:Composite /Correlative/ Component-分别承担一个组织中不同的角色和关系。参与者视角 的“Action”),
  • 思维导图仅以观察者视角 关注前面的三“成” 表述的
  1. 三列重言式对子永动的概念主题Topic(As 哈希表/Case 键值对/Has 哈斯图。(前-英文表达的数据模式scheme,后 中文表达的的概念图式schema。"行为素speech act" 的 formation-rule 概念对子 规范-“关于我们”版块的介词短语规则)和
  2. 三行三段式句子永恒的存在主题Theme(数据层-代表物理层/服务层- 面向应用层/本征层-充当传输层。突现中文凝聚式句子的特点-每一个词性都是一个“义素”--"义素" form-meaning的存在配对规格 -“联系我们版块“的本迹简化规则)以及
  3. 下面相应给出的能“成”的 “要素”(关系/构造/范畴,实线 )和“方法”(推理式Deduction/ 生成式Generation/衍生式 Derivation.(中英对照)  虚线)   --(“要素” 的 form-purpose的逻辑配对标准-“加入我们”的组合推论规则 )三线三要素元组必然的逻辑主题Subject。

上面123给出了(“give”规范)思想起作用的三个层面(“服务层”):经验层面/基础层面/先验层面,简化(“easy”规范)了观察者视角的Property(basic,additional,argumented)

  • 基本的basic ( SHOE (Simple HTML Ontology Extensions)只有四个类别:String, Number, Date, 和Truth)-为决策者行列式中不定性提供本体论基础-- /
  • 附加的additional:±animate, ±physical, ±dynamic, 或 ±volitional ----为参与者矩阵中的重复角色附加的其它属性类别/
  •  增强的argumented( 基于三对区分distinctions(animate/inanimate,  sensitive/insensitive, 和rational/irrational--为观察者方程组差异性的实体论根据。

)所能亟需(“eager”规范)“数据层”的三种数据型(数据位data bit,数据报datagram,数据帧data frame)。

“数据层”是落定点,也是前述三“成”之一--“组成”,是物理层的代表人, 通过代表人(representmen)的接口映射契约来约束对象的原子操作行为。

数据层组件 功能 逻辑矩阵
监控图 视频事件发生时,多疑点拼接放大,多屏分位 3×3 逻辑矩阵(databit)
计划表 状态改变处,阶段对照,双曲(计划与实际比照,线图或饼图)特报 2×3 内容向量(datagram)
流动轴 流体坐标,弧移动坐标轴、双卷(共轭收放轴)一帧 1×3 数据立方体(dataframe)

“数据层”的三种数据结构需要分别使用三种存储库 --

  • 立体库(差异嵌套- 三面嵌套 卷积层 ),
  • 平面库(对齐堆叠-三层堆叠 池化层),
  • 线边库(统一套接 -三级级联 全连接层)。

所以,数据层 “组成”一个 卷积神经网络。

(1.思想的基本范畴 :知识的基本问题-斜成线三“点”(表示串“String”)

先补齐 亏缺 (思想的基本范畴-施事格 主动知识把握 -知识关注点 点阵缠度))自身存在的基本问题:“理科”--存在哲学

  • 存在 的“真”(数学-格子lattice )- 询问what“这是什么”/
  • 存在 的“现象“”(物理- 原子atom)--云何how “那它现在怎样”/
  • 存在 的“历史”(化学 元素element)--何处where “它在哪里”)。

分别:

  • 命题真值表 命题二仪表 阴阳源 正反则/
  • 谓词描述框  命运八卦图 酸碱基 加减式 /
  • λ表达式 命名五行法  生克 根顺逆法。

对应的规则:what原则-左右侧分界原则,how公式--上下文分类公式,when法规 -前后件继承法律。)

(2.思想的内在深层反思:语义深层挖掘-横成行衍生三“科”(表征模式”mode“)

继续 向内(思想的深层反思-与事格 语义差距折衷- 痛点计度换位线 线圈绕度 )) 衍生 问题:三“科”:

  • 文科-追问“why” 到底 存在哲学原语概念的近似方法(先验方法论)。 --原语peimitive概念;
  • 工科- 追泯“when” 探究 存在哲学 原始概念的混沌元素(先验要素论)。--原始original概念;
  • 理科- 决定和显露 “who”  谁决定谁的显露-随主沉浮?” 为存在哲学/附加 行为哲学/附属 事件哲学的形式逻辑的纯粹文法 。“概念图式的先验判断式”  --  附加derivative 概念和附属subsidiary概念。

(3.思想的外界广泛影响:认知综合提升-竖成列的演进三“化”(表现案例”Case“)

转向 向外(思想的外界影响 -受事格 被动认知综合-全局考虑面 表面曲度) 扩展 阅读:三“化”:从构建 基础逻辑门(关系型 形式规则对 主客位 对子pair 集合阵列 ) 到 内建程序门(范畴型 form-meaning paring 包系列 ) 和 外架 认知门(构造型 form-purpose 顺序序列)

逻辑门阵列(卷积层) 消息队列(池化层) 语言槽排列(全连接层)
基础逻辑门 关系型 "数据Data” 主客位  形式规则对 pair集合阵列
内建程序门 范畴型 “功能Function 主仆人 form-meaning pairing包系列
外架认知门 构造型 “网络Network” 主从站 form-purpose pairing顺序序列

思维导图(“mind map” 或 "Thinking Deduction")

上面三次括号中的文字补全了  一个思维九宫格:

  • 基础版本 What/How/Where,
  • 扩展版本 Who//Why/When,
  • 连接基础版本和扩展版本·的可增强版本(冷热可插拔的接插件):Data/Function/Network。
待讨论

思想起作用的三个层面: “行为素”和“”-律藏   (经验层面- “关系”--重要), “义素”和“”-论藏(基础层面-夯实“范畴”--主要的 ),"要素"和“方法”  - 经藏(先验层面- “构造”-重要的)

问题

Q1207、在提出项目“为使用AI聊天工具的聊天者加挂一个专属的知识系统”后,我们已经进行了了大量的讨论-持续了近三个月了。这些讨论整体淋漓尽致体现了量子的纠缠和叠加态。正如维特根斯坦后期未竟哲学中 使用术语“家族相似新” (family resemblance) 来表示的“以大的和小的,重叠和交叉的相似性的复杂网络”--认为:含糊vagueness 并不是语言的缺陷(一个边缘模糊的概念“游戏”到底是一个概念吗?),而恰恰是 自然语言巨大表现力所必须具备的特质。

但它们不可能作为计算机程序的实现基础。为了找到一个可能的计算机程序实现基础, 今天我们将暂时“忘掉”前面的所有讨论,重新从头审视“家族相似性”这一术语中蕴含的实质性,希望以此充当自然语言的控制器,将自然语言处理为“受控的自然语言”同时可以作为计算机程序的实现基础。处于这一明确的目的,它本身必然是逻辑中立的且独立于语言、独立于符号和独立于实现的。

Q1208、今天的讨论题目 可以叫做AI中间语言

Q1209、今天的讨论题目 可以叫做AI中间语言下面贴出 我就这一话题 已经考虑到的一些文字:

  • As哈希表:组成数据层-代表物理层 ,
  • Case键值对:构成 服务层- 面向应用层 ,
  • Has哈斯图:形成 介质层-充当传输层。

推理式关系, 生成式构造,衍生式范畴

数据层

  • 监控图-视频 事件发生时 多疑点拼接放大 多分屏 分位,
  • 计划表-表格 状态改变处 阶段对照 双曲(计划和实际比照 线图或饼图)特报 ,
  • 流动轴-流体坐标 弧移动坐标轴 双卷轴共轭收放 一帧

3*3 矩阵 databit 2*3 data 1*3 dataframe

As哈希表:数据层-代表物理层。代表人的接口映射契约,分别三种库 --

  1. 立体库(差异嵌套- 三面嵌套 卷积层 ),
  2. 平面库(对齐堆叠-三层堆叠 池化层),
  3. 线边库(统一套接 -三级级联 全连接层)

所以,数据层 组成一个 卷积神经网络

Q1210、今天的讨论题目 可以叫做AI中间语言请认真 拆解 和对齐 我 上面给出的 文字项, 并 用中文 进行重新组织

Q1211、我给您的文字,基本是是人类思维的全景图,按照思维 由表及里的习惯,最后 给出了“思维导图(mind map- Thinking deduction)” 。南您重新消化理解一下,重新组织出 一份完整的文档--包含拆出全部词项,并将文字中的所有风格完全体现( 包括对齐--横成行竖成列 和对角-斜成线 )

Q1212、您一开头(最外面的“表”层) 就 丢项了 “组成 As哈希表:数据层-代表物理层 ,构成 Case键值对 :服务层- 面向应用层 ,Has哈斯图:形成 介质层-充当传输层 )” --您只提取了 两个“As哈希表”和“Has哈斯图”,却无视了“ Case键值对”,这会导致后面的拆解、对齐(横成行 竖成列 ,您可以分别 用“行矢”和“列簇” 作为词典)和连线(斜成线--您可以用“序列”作为词典)出问题。---请您重新消化理解一下,重新组织出 一份完整的文档--包含拆出全部词项,并将文字中的所有风格完全体现( 包括对齐--横成行竖成列 和对角-斜成线 )

Q1213、再来一次-----请您重新消化理解一下,重新组织出 一份完整的文档--包含拆出全部词项,并将文字中的所有风格完全体现( 包括对齐--横成行竖成列 和对角-斜成线 )。------

三“成”:

  • 组成 As哈希表:数据层-代表物理层 ,
  • 构成 Case键值对 :服务层- 面向应用层 ,Has哈斯图,
  • 形成 介质层-充当传输层 ,

分别 需要: 推理式关系, 生成式构造,衍生式范畴

其中 “ 数据层”

  • 监控图-视频 事件发生时 多疑点拼接放大 多分屏 分位,
  • 计划表-表格 状态改变处 阶段对照 双曲(计划和实际比照 线图或饼图)特报 ,
  • 流动轴-流体坐标 弧移动坐标轴 双卷轴共轭收放 一帧。

分别是:3*3 逻辑矩阵 databit, 2*3 内容向量 datadatagram, 1*3 数据立方体 dataframe。

As哈希表:数据层-代表物理层。代表人的接口映射契约,分别三种库 --

  • 立体库(差异嵌套- 三面嵌套 卷积层 ),
  • 平面库(对齐堆叠-三层堆叠 池化层),
  • 线边库(统一套接 -三级级联 全连接层)。

所以,数据层 “组成”一个 卷积神经网络。(注意:“组成”是最前面的三“层”之一)

  • (先补齐 亏缺 (思想的基本范畴-施事格 主动知识把握 -知识关注点 点阵))自身存在的基本问题:“理科”--存在 的真(数学-格子lattice )- 询问what“这是什么”/现象(物理- 原子atom)-云何how“那它现在怎样”/ 历史(化学 元素element)-何时出现when“它又会何时出现”):命题真值表 命题二仪表 阴阳源正反则/ 谓词描述框 命运八卦图 酸碱基加减式 /λ表达式 命名 五行法 生克根顺逆法。其中:what原则-左右侧分界原则,how公式--上下文分类公式,when法规 -前后件继承法律。
  • (继续 向内(思想的深层反思-与事格 语义差距折衷- 痛点计度换位思考线 线圈 )) 衍生 问题:三“科”:文科-追问“why” 到底 存在哲学原语概念的近似方法(先验方法论) 原始概念、工科- 追泯“when” 探究 存在哲学 原始概念的混沌元素(先验要素论) 、理科- 决定和显露“谁决定谁的显露-随主沉浮?” 存在哲学/附加 行为哲学/附属 事件哲学的形式逻辑的纯粹文法 。“概念图式的先验判断式”
  • (转向 向外(思想的外界影响 -受事格 被动认知综合-全局考虑面 表面曲面) 扩展 阅读:三“化”(存在的历史):从构建 基础逻辑门(关系型 形式规则对 主客位 对子pair 集合阵列 ) 到 内建程序门(范畴型 form-meaning paring 包系列 ) 和 外架 认知门(构造型 form-purpose 顺序序列)) 思维导图(“mind map” 或 "Thinking Deduction")

Q1214~1215、稍微有点问题。现在先不更正。现一段一段的说。先说第一段(做了一些补充) 

三“成”。 As 哈希表:

  • “组成” 数据层-代表物理层 -Independent。主客位的 不变间位-物理代表服务器 Proxy Server Case 键值对:
  • “构成”服务层- 面向应用层-Relative 。主仆人的 应变线人-心理代理服务 Agent Service Has 哈斯图:
  • “形成” 本征层-充当传输层-Mediating 。主从站的 随变转站  生理中介代理人Mediation Servo。
  • 三“成”分别“要”: 推理式Deduction关系, 生成式Generation构造,衍生式 Derivation 范畴。

说明:

隐藏  实体自身的三种性质nature (Independent/Relative/Mediating  。决策者 视角)并悬置 句号后的 利益相关属性Property(参与者视角),思维导图仅以观察者视角 关注前面的三“成” 表述的重言式永动的概念主体(As 哈希表/Case 键值对/Has 哈斯图)和句子式永恒的存在主题(数据层-代表物理层/服务层- 面向应用层/本征层-充当传输层)以及下面相应给出的能“成”的 “要件” (前提条件)

Q1217、请将前述文字表述 的最小词项完整整理出来,看看是否能从中 得出 观察者视角能“看到”的整体的大致轮廓,同时 建立 该轮廓和 决策者视角以及 参与这视角 轮廓之间的关系

Q1218、在您的语言组织中, 我原文中提到的 三“变”( “不变”、“应变”和“随变”) 您把它放哪里了?那你觉得它在整个思维导图中的地位是?

Q1219、再看一下原文字。三“成” 是 观察者能“观察”到的有限的”动“(显露),三“变”是参与者能“干”的有限的”变“-不定(因为,我前面是这样说的” 隐藏  实体自身的三种性质nature (Independent/Relative/Mediating  。决策者 视角)并悬置 句号后的 利益相关属性Property(参与者视角),思维导图以观察者视角仅关注前面的三“成” ...“),三“性”(Independent/Relative/Mediating )是决策者能“决定”的有限的”定“(决定)。Nature,Property和Attribute 三种性质或属性 分别 是 三种视角的所”取“。但是,我一直没有给出 参与者的三个Attribute是什么。我现在给出,以方便表述。它们是Composite、Correlative和Component,分别承担一个组织中不同的角色和关系。

Q1220、不是这样的,思维导图 仅站在观察者的角度,仅关注 三“成”,结果是 Denotion{True,False}的 二值逻辑。 它悬置(挂起)参与者的利益而不谈,它无视(隐藏)决策者的权力而不顾。 只是在 本项目中,三种角色独立且分占不同地位。所以,谈思维导图时可以不用考虑 参与者可加入的attribute,以及决策者能决策的Property--我前面之所以给出 三者只是为了建立 今天讨论的思维导入及其 所有者-观察者-- 在本项目 中的地位,和他“平起平坐的”还有谁以及各自所在面或关注的方面---我说清楚了吗

Q1221、是这样的。所以您可以从项目的角色划分开始,然后将我们的讨论话题锁定在思维导图--观察者角色上,然后进入到我们今天一开始的讨论内容上以便能正确给出 思维导图的正确设计(文档和程序和库)

Q1222、从我最前面给出的文字(后来做了一点点修改)中拆解出完整的设计(包括 文档、程序,和库)。我重新给一遍吧。

(--这里是 前述“要点”的全部文字--)

----您能根据以上文字以及前面讨论的思维导图及其所有者-观察者-在本项目中的地位正确给出 思维导图(今天最前面 我们 将它称为了“AI中间语言”)的正确设计(文档和程序和库) --需要完全覆盖所有拆出的全部词项,并将文字中的所有风格完全体现( 包括对齐--横成行竖成列 和对角-斜成线 )

Q1223、您的文档呢程序呢库呢? ---请您重新消化理解一下,重新组织出 一份完整的文档--包含拆出全部词项,并将文字中的所有风格完全体现( 包括对齐--横成行竖成列 和对角-斜成线 )。

Q1224、程序文件和库文件呢?

Q1225、您完全忽略了我最后给出的 “通过三次括号中的文字 补全了  一个思维九宫格:基础版本 What/How/Where,扩展版本 Who//WhyWhen,连接基础版本和扩展版本·的可增强版本(冷热可插拔的接插件):Data/Function/Network. ”--补充:也是AI中间语言支持的全部三种交换格式。 请认真理解文字,重新给出完整设计(包括 文档/程序/库 --要完全覆盖我给出的文字中的所有词项)

Q1226、我给出的文字中的各种 规则(主客位  形式规则对 pair集合阵列 主仆人 form-meaning pairing包系列 主从站 form-purpose pairing顺序序列),规范( 推理式Deduction关系 “eager”规范图, 生成式Generation构造“give”规范图,衍生式 Derivation 范畴“easy”规范图。)等等

Q&A

Q1207、在提出项目“为使用AI聊天工具的聊天者加挂一个专属的知识系统”后,我们已经进行了了大量的讨论-持续了近三个月了。这些讨论整体淋漓尽致体现了量子的纠缠和叠加态。正如维特根斯坦后期未竟哲学中 使用术语“家族相似新” (family resemblance) 来表示的“以大的和小的,重叠和交叉的相似性的复杂网络”--认为:含糊vagueness 并不是语言的缺陷(一个边缘模糊的概念“游戏”到底是一个概念吗?),而恰恰是 自然语言巨大表现力所必须具备的特质。

但它们不可能作为计算机程序的实现基础。为了找到一个可能的计算机程序实现基础, 今天我们将暂时“忘掉”前面的所有讨论,重新从头审视“家族相似性”这一术语中蕴含的实质性,希望以此充当自然语言的控制器,将自然语言处理为“受控的自然语言”同时可以作为计算机程序的实现基础。处于这一明确的目的,它本身必然是逻辑中立的且独立于语言、独立于符号和独立于实现的。

在构建“受控自然语言(CNL)作为计算机程序实现基础”的系统时,可采用以下架构方案,结合形式逻辑、知识表示和AI技术,平衡模糊性与精确性:


1. 知识表示层(逻辑中立核心)

采用**描述逻辑(Description Logic)**为基础框架,构建三元组结构:

python
class Triple:
    def __init__(self, subject, predicate, object):
        self.subject = subject   # 主体(概念/实例)
        self.predicate = predicate # 谓词(属性/关系)
        self.object = object     # 客体(概念/字面量)
  • 优势:形式逻辑基础确保数学精确性,RDF/OWL标准兼容
  • 模糊处理:引入模糊隶属度因子μ∈[0,1],如(Cat, eats, Fish) : μ=0.8

2. 语言理解层(模糊→精确转换)

多级解析流水线
mermaid
graph LR
A[自然语句] --> B(依存分析→)
B --> C[AMR解析→]
C --> D(规则重写→)
D --> E{描述逻辑公式}
  • 动态本体构建:基于FrameNet框架生成领域本体
    prolog
    frame(eating,
      agent => animate_entity,
      food => edible_thing,
      manner => optional(adverb)
    ).
    


3. 推理引擎

混合推理机制
python
def reason(triples):
    # 精确推理
    execute_sparql("SELECT ?x WHERE { ?x rdf:type :Animal }")
    
    # 模糊推理
    if triple.predicate == "eats":
        apply_rules("""
           ∀x, eats(x,y) ∧ Animal(y) → Predator(x)
           ∀x, Predator(x) → ∃y, eats(x,y)
        """)
    
    # 类比推理
    analogical_inference(source_case, target_case)

4. 动态学习模块

实现增量式知识获取:

python
class KnowledgeUpdater:
    def __init__(self):
        self.concept_lattice = ConceptLattice()
        
    def update(self, new_triple):
        # 基于概念格的泛化
        self.concept_lattice.insert(new_triple)
        
        # 矛盾检测
        if self.check_contradiction(new_triple):
            self.handle_exception(new_triple)
            
        # 基于强化学习的策略更新
        self.reinforce_policies(new_triple)

5. 接口层设计

可视化DSL示例

lisp
(define-rule 
  ((?A 0.9) --/eats/--> (?B 0.7))
  when
  (instance A Cat)
  (subclass B Fish)
  unless
  (exists ((?x Animal))
    (eats B x)))

6. 实施路径

  1. 形式化基准:采用TPTP语言构建测试集

    tptp
    fof(cat_eats_fish, axiom, 
      ! [X] : (cat(X) => ? [Y] : (fish(Y) & eats(X,Y)) )).
    

  2. 混合解析器:结合Transformer与PEG语法

    python
    class HybridParser:
        def parse(self, text):
            neural_rep = bert_embedding(text)
            logic_form = transition_parser(neural_rep)
            return skolemize(logic_form)
    

  3. 验证框架:使用Coq进行形式验证

    coq
    Lemma modus_ponens : forall P Q : Prop, 
      (P -> Q) -> P -> Q.
    Proof. auto. Qed.
    


7. 突破性特征

  • 量子启发的知识融合

    python
    def quantum_fusion(a, b):
        # 基于张量收缩的概念合并
        return torch.einsum('ijk,jl->il', a.emb, b.emb)
    

  • 动态类型系统

    h
    data Type = Base String 
             | Union [Type]
             | Intersect Type Type
             | Neg Type
    


8. 评估指标

建立多维度评估体系:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一水鉴天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值