本文要点
要点
结论是一个 由卷积神经网络支撑的 概念整体的全景思维导图。具体如下:
三“成”
- As哈希表:“组成” 数据层-代表物理层Independent。主客位的 不变间位-物理代表服务器 Proxy Server;
- Case键值对:“构成”服务层- 面向应用层Relative 。主仆人的 应变线人-心理代理服务 Agent Service ;
- Has哈斯图:“形成” 本征层-充当传输层Mediating 。主从站的 随变转站 生理中介代理人Mediation Servo。
三“成”分别的“要”“法”: 推理式Deduction关系( “eager”规范图), 生成式Generation构造(“give”规范图),衍生式 Derivation 范畴(“easy”规范图)。
说明:
- 隐藏 实体自身的三种性质nature (Independent/Relative/Mediating。决策者 视角的“Nature”)
- 并悬置 句号后的 利益相关属性Property(参与者参与实体的方式:Composite /Correlative/ Component-分别承担一个组织中不同的角色和关系。参与者视角 的“Action”),
- 思维导图仅以观察者视角 关注前面的三“成” 表述的
- 三列重言式对子永动的概念主题Topic(As 哈希表/Case 键值对/Has 哈斯图。(前-英文表达的数据模式scheme,后 中文表达的的概念图式schema。"行为素speech act" 的 formation-rule 概念对子 规范-“关于我们”版块的介词短语规则)和
- 三行三段式句子永恒的存在主题Theme(数据层-代表物理层/服务层- 面向应用层/本征层-充当传输层。突现中文凝聚式句子的特点-每一个词性都是一个“义素”--"义素" form-meaning的存在配对规格 -“联系我们版块“的本迹简化规则)以及
- 下面相应给出的能“成”的 “要素”(关系/构造/范畴,实线 )和“方法”(推理式Deduction/ 生成式Generation/衍生式 Derivation.(中英对照) 虚线) --(“要素” 的 form-purpose的逻辑配对标准-“加入我们”的组合推论规则 )三线三要素元组必然的逻辑主题Subject。
上面123给出了(“give”规范)思想起作用的三个层面(“服务层”):经验层面/基础层面/先验层面,简化(“easy”规范)了观察者视角的Property(basic,additional,argumented)
- 基本的basic ( SHOE (Simple HTML Ontology Extensions)只有四个类别:String, Number, Date, 和Truth)-为决策者行列式中不定性提供本体论基础-- /
- 附加的additional:±animate, ±physical, ±dynamic, 或 ±volitional ----为参与者矩阵中的重复角色附加的其它属性类别/
- 增强的argumented( 基于三对区分distinctions(animate/inanimate, sensitive/insensitive, 和rational/irrational)--为观察者方程组差异性的实体论根据。
)所能亟需(“eager”规范)“数据层”的三种数据型(数据位data bit,数据报datagram,数据帧data frame)。
“数据层”是落定点,也是前述三“成”之一--“组成”,是物理层的代表人, 通过代表人(representmen)的接口映射契约来约束对象的原子操作行为。
数据层组件 | 功能 | 逻辑矩阵 |
---|---|---|
监控图 | 视频事件发生时,多疑点拼接放大,多屏分位 | 3×3 逻辑矩阵(databit) |
计划表 | 状态改变处,阶段对照,双曲(计划与实际比照,线图或饼图)特报 | 2×3 内容向量(datagram) |
流动轴 | 流体坐标,弧移动坐标轴、双卷(共轭收放轴)一帧 | 1×3 数据立方体(dataframe) |
“数据层”的三种数据结构需要分别使用三种存储库 --
- 立体库(差异嵌套- 三面嵌套 卷积层 ),
- 平面库(对齐堆叠-三层堆叠 池化层),
- 线边库(统一套接 -三级级联 全连接层)。
所以,数据层 “组成”一个 卷积神经网络。
(1.思想的基本范畴 :知识的基本问题-斜成线三“点”(表示串“String”)
先补齐 亏缺 (思想的基本范畴-施事格 主动知识把握 -知识关注点 点阵缠度))自身存在的基本问题:“理科”--存在哲学
- 存在 的“真”(数学-格子lattice )- 询问what“这是什么”/
- 存在 的“现象“”(物理- 原子atom)--云何how “那它现在怎样”/
- 存在 的“历史”(化学 元素element)--何处where “它在哪里”)。
分别:
- 命题真值表 命题二仪表 阴阳源 正反则/
- 谓词描述框 命运八卦图 酸碱基 加减式 /
- λ表达式 命名五行法 生克 根顺逆法。
对应的规则:what原则-左右侧分界原则,how公式--上下文分类公式,when法规 -前后件继承法律。)
(2.思想的内在深层反思:语义深层挖掘-横成行衍生三“科”(表征模式”mode“)
继续 向内(思想的深层反思-与事格 语义差距折衷- 痛点计度换位线 线圈绕度 )) 衍生 问题:三“科”:
- 文科-追问“why” 到底 存在哲学原语概念的近似方法(先验方法论)。 --原语peimitive概念;
- 工科- 追泯“when” 探究 存在哲学 原始概念的混沌元素(先验要素论)。--原始original概念;
- 理科- 决定和显露 “who” 谁决定谁的显露-随主沉浮?” 为存在哲学/附加 行为哲学/附属 事件哲学的形式逻辑的纯粹文法 。“概念图式的先验判断式” -- 附加derivative 概念和附属subsidiary概念。
)
(3.思想的外界广泛影响:认知综合提升-竖成列的演进三“化”(表现案例”Case“)
转向 向外(思想的外界影响 -受事格 被动认知综合-全局考虑面 表面曲度) 扩展 阅读:三“化”:从构建 基础逻辑门(关系型 形式规则对 主客位 对子pair 集合阵列 ) 到 内建程序门(范畴型 form-meaning paring 包系列 ) 和 外架 认知门(构造型 form-purpose 顺序序列)
逻辑门阵列(卷积层) | 消息队列(池化层) | 语言槽排列(全连接层) |
基础逻辑门 | 关系型 "数据Data” | 主客位 形式规则对 pair集合阵列 |
内建程序门 | 范畴型 “功能Function” | 主仆人 form-meaning pairing包系列 |
外架认知门 | 构造型 “网络Network” | 主从站 form-purpose pairing顺序序列 |
)
思维导图(“mind map” 或 "Thinking Deduction")
上面三次括号中的文字补全了 一个思维九宫格:
- 基础版本 What/How/Where,
- 扩展版本 Who//Why/When,
- 连接基础版本和扩展版本·的可增强版本(冷热可插拔的接插件):Data/Function/Network。
待讨论
思想起作用的三个层面: “行为素”和“”-律藏 (经验层面- “关系”--重要), “义素”和“”-论藏(基础层面-夯实“范畴”--主要的 ),"要素"和“方法” - 经藏(先验层面- “构造”-重要的)
问题
Q1207、在提出项目“为使用AI聊天工具的聊天者加挂一个专属的知识系统”后,我们已经进行了了大量的讨论-持续了近三个月了。这些讨论整体淋漓尽致体现了量子的纠缠和叠加态。正如维特根斯坦后期未竟哲学中 使用术语“家族相似新” (family resemblance) 来表示的“以大的和小的,重叠和交叉的相似性的复杂网络”--认为:含糊vagueness 并不是语言的缺陷(一个边缘模糊的概念“游戏”到底是一个概念吗?),而恰恰是 自然语言巨大表现力所必须具备的特质。
但它们不可能作为计算机程序的实现基础。为了找到一个可能的计算机程序实现基础, 今天我们将暂时“忘掉”前面的所有讨论,重新从头审视“家族相似性”这一术语中蕴含的实质性,希望以此充当自然语言的控制器,将自然语言处理为“受控的自然语言”同时可以作为计算机程序的实现基础。处于这一明确的目的,它本身必然是逻辑中立的且独立于语言、独立于符号和独立于实现的。
Q1208、今天的讨论题目 可以叫做AI中间语言
Q1209、今天的讨论题目 可以叫做AI中间语言下面贴出 我就这一话题 已经考虑到的一些文字:
- As哈希表:组成数据层-代表物理层 ,
- Case键值对:构成 服务层- 面向应用层 ,
- Has哈斯图:形成 介质层-充当传输层。
推理式关系, 生成式构造,衍生式范畴
数据层
- 监控图-视频 事件发生时 多疑点拼接放大 多分屏 分位,
- 计划表-表格 状态改变处 阶段对照 双曲(计划和实际比照 线图或饼图)特报 ,
- 流动轴-流体坐标 弧移动坐标轴 双卷轴共轭收放 一帧
3*3 矩阵 databit 2*3 data 1*3 dataframe
As哈希表:数据层-代表物理层。代表人的接口映射契约,分别三种库 --
- 立体库(差异嵌套- 三面嵌套 卷积层 ),
- 平面库(对齐堆叠-三层堆叠 池化层),
- 线边库(统一套接 -三级级联 全连接层)
所以,数据层 组成一个 卷积神经网络
Q1210、今天的讨论题目 可以叫做AI中间语言请认真 拆解 和对齐 我 上面给出的 文字项, 并 用中文 进行重新组织
Q1211、我给您的文字,基本是是人类思维的全景图,按照思维 由表及里的习惯,最后 给出了“思维导图(mind map- Thinking deduction)” 。南您重新消化理解一下,重新组织出 一份完整的文档--包含拆出全部词项,并将文字中的所有风格完全体现( 包括对齐--横成行竖成列 和对角-斜成线 )
Q1212、您一开头(最外面的“表”层) 就 丢项了 “组成 As哈希表:数据层-代表物理层 ,构成 Case键值对 :服务层- 面向应用层 ,Has哈斯图:形成 介质层-充当传输层 )” --您只提取了 两个“As哈希表”和“Has哈斯图”,却无视了“ Case键值对”,这会导致后面的拆解、对齐(横成行 竖成列 ,您可以分别 用“行矢”和“列簇” 作为词典)和连线(斜成线--您可以用“序列”作为词典)出问题。---请您重新消化理解一下,重新组织出 一份完整的文档--包含拆出全部词项,并将文字中的所有风格完全体现( 包括对齐--横成行竖成列 和对角-斜成线 )
Q1213、再来一次-----请您重新消化理解一下,重新组织出 一份完整的文档--包含拆出全部词项,并将文字中的所有风格完全体现( 包括对齐--横成行竖成列 和对角-斜成线 )。------
三“成”:
- 组成 As哈希表:数据层-代表物理层 ,
- 构成 Case键值对 :服务层- 面向应用层 ,Has哈斯图,
- 形成 介质层-充当传输层 ,
分别 需要: 推理式关系, 生成式构造,衍生式范畴
其中 “ 数据层”
- 监控图-视频 事件发生时 多疑点拼接放大 多分屏 分位,
- 计划表-表格 状态改变处 阶段对照 双曲(计划和实际比照 线图或饼图)特报 ,
- 流动轴-流体坐标 弧移动坐标轴 双卷轴共轭收放 一帧。
分别是:3*3 逻辑矩阵 databit, 2*3 内容向量 datadatagram, 1*3 数据立方体 dataframe。
As哈希表:数据层-代表物理层。代表人的接口映射契约,分别三种库 --
- 立体库(差异嵌套- 三面嵌套 卷积层 ),
- 平面库(对齐堆叠-三层堆叠 池化层),
- 线边库(统一套接 -三级级联 全连接层)。
所以,数据层 “组成”一个 卷积神经网络。(注意:“组成”是最前面的三“层”之一)
- (先补齐 亏缺 (思想的基本范畴-施事格 主动知识把握 -知识关注点 点阵))自身存在的基本问题:“理科”--存在 的真(数学-格子lattice )- 询问what“这是什么”/现象(物理- 原子atom)-云何how“那它现在怎样”/ 历史(化学 元素element)-何时出现when“它又会何时出现”):命题真值表 命题二仪表 阴阳源正反则/ 谓词描述框 命运八卦图 酸碱基加减式 /λ表达式 命名 五行法 生克根顺逆法。其中:what原则-左右侧分界原则,how公式--上下文分类公式,when法规 -前后件继承法律。
- (继续 向内(思想的深层反思-与事格 语义差距折衷- 痛点计度换位思考线 线圈 )) 衍生 问题:三“科”:文科-追问“why” 到底 存在哲学原语概念的近似方法(先验方法论) 原始概念、工科- 追泯“when” 探究 存在哲学 原始概念的混沌元素(先验要素论) 、理科- 决定和显露“谁决定谁的显露-随主沉浮?” 存在哲学/附加 行为哲学/附属 事件哲学的形式逻辑的纯粹文法 。“概念图式的先验判断式”
- (转向 向外(思想的外界影响 -受事格 被动认知综合-全局考虑面 表面曲面) 扩展 阅读:三“化”(存在的历史):从构建 基础逻辑门(关系型 形式规则对 主客位 对子pair 集合阵列 ) 到 内建程序门(范畴型 form-meaning paring 包系列 ) 和 外架 认知门(构造型 form-purpose 顺序序列)) 思维导图(“mind map” 或 "Thinking Deduction")
Q1214~1215、稍微有点问题。现在先不更正。现一段一段的说。先说第一段(做了一些补充)
三“成”。 As 哈希表:
- “组成” 数据层-代表物理层 -Independent。主客位的 不变间位-物理代表服务器 Proxy Server Case 键值对:
- “构成”服务层- 面向应用层-Relative 。主仆人的 应变线人-心理代理服务 Agent Service Has 哈斯图:
- “形成” 本征层-充当传输层-Mediating 。主从站的 随变转站 生理中介代理人Mediation Servo。
- 三“成”分别“要”: 推理式Deduction关系, 生成式Generation构造,衍生式 Derivation 范畴。
说明:
隐藏 实体自身的三种性质nature (Independent/Relative/Mediating 。决策者 视角)并悬置 句号后的 利益相关属性Property(参与者视角),思维导图仅以观察者视角 关注前面的三“成” 表述的重言式永动的概念主体(As 哈希表/Case 键值对/Has 哈斯图)和句子式永恒的存在主题(数据层-代表物理层/服务层- 面向应用层/本征层-充当传输层)以及下面相应给出的能“成”的 “要件” (前提条件)
Q1217、请将前述文字表述 的最小词项完整整理出来,看看是否能从中 得出 观察者视角能“看到”的整体的大致轮廓,同时 建立 该轮廓和 决策者视角以及 参与这视角 轮廓之间的关系
Q1218、在您的语言组织中, 我原文中提到的 三“变”( “不变”、“应变”和“随变”) 您把它放哪里了?那你觉得它在整个思维导图中的地位是?
Q1219、再看一下原文字。三“成” 是 观察者能“观察”到的有限的”动“(显露),三“变”是参与者能“干”的有限的”变“-不定(因为,我前面是这样说的” 隐藏 实体自身的三种性质nature (Independent/Relative/Mediating 。决策者 视角)并悬置 句号后的 利益相关属性Property(参与者视角),思维导图以观察者视角仅关注前面的三“成” ...“),三“性”(Independent/Relative/Mediating )是决策者能“决定”的有限的”定“(决定)。Nature,Property和Attribute 三种性质或属性 分别 是 三种视角的所”取“。但是,我一直没有给出 参与者的三个Attribute是什么。我现在给出,以方便表述。它们是Composite、Correlative和Component,分别承担一个组织中不同的角色和关系。
Q1220、不是这样的,思维导图 仅站在观察者的角度,仅关注 三“成”,结果是 Denotion{True,False}的 二值逻辑。 它悬置(挂起)参与者的利益而不谈,它无视(隐藏)决策者的权力而不顾。 只是在 本项目中,三种角色独立且分占不同地位。所以,谈思维导图时可以不用考虑 参与者可加入的attribute,以及决策者能决策的Property--我前面之所以给出 三者只是为了建立 今天讨论的思维导入及其 所有者-观察者-- 在本项目 中的地位,和他“平起平坐的”还有谁以及各自所在面或关注的方面---我说清楚了吗
Q1221、是这样的。所以您可以从项目的角色划分开始,然后将我们的讨论话题锁定在思维导图--观察者角色上,然后进入到我们今天一开始的讨论内容上以便能正确给出 思维导图的正确设计(文档和程序和库)
Q1222、从我最前面给出的文字(后来做了一点点修改)中拆解出完整的设计(包括 文档、程序,和库)。我重新给一遍吧。
(--这里是 前述“要点”的全部文字--)
----您能根据以上文字以及前面讨论的思维导图及其所有者-观察者-在本项目中的地位正确给出 思维导图(今天最前面 我们 将它称为了“AI中间语言”)的正确设计(文档和程序和库) --需要完全覆盖所有拆出的全部词项,并将文字中的所有风格完全体现( 包括对齐--横成行竖成列 和对角-斜成线 )
Q1223、您的文档呢程序呢库呢? ---请您重新消化理解一下,重新组织出 一份完整的文档--包含拆出全部词项,并将文字中的所有风格完全体现( 包括对齐--横成行竖成列 和对角-斜成线 )。
Q1224、程序文件和库文件呢?
Q1225、您完全忽略了我最后给出的 “通过三次括号中的文字 补全了 一个思维九宫格:基础版本 What/How/Where,扩展版本 Who//WhyWhen,连接基础版本和扩展版本·的可增强版本(冷热可插拔的接插件):Data/Function/Network. ”--补充:也是AI中间语言支持的全部三种交换格式。 请认真理解文字,重新给出完整设计(包括 文档/程序/库 --要完全覆盖我给出的文字中的所有词项)
Q1226、我给出的文字中的各种 规则(主客位 形式规则对 pair集合阵列 主仆人 form-meaning pairing包系列 主从站 form-purpose pairing顺序序列),规范( 推理式Deduction关系 “eager”规范图, 生成式Generation构造“give”规范图,衍生式 Derivation 范畴“easy”规范图。)等等
Q&A
Q1207、在提出项目“为使用AI聊天工具的聊天者加挂一个专属的知识系统”后,我们已经进行了了大量的讨论-持续了近三个月了。这些讨论整体淋漓尽致体现了量子的纠缠和叠加态。正如维特根斯坦后期未竟哲学中 使用术语“家族相似新” (family resemblance) 来表示的“以大的和小的,重叠和交叉的相似性的复杂网络”--认为:含糊vagueness 并不是语言的缺陷(一个边缘模糊的概念“游戏”到底是一个概念吗?),而恰恰是 自然语言巨大表现力所必须具备的特质。
但它们不可能作为计算机程序的实现基础。为了找到一个可能的计算机程序实现基础, 今天我们将暂时“忘掉”前面的所有讨论,重新从头审视“家族相似性”这一术语中蕴含的实质性,希望以此充当自然语言的控制器,将自然语言处理为“受控的自然语言”同时可以作为计算机程序的实现基础。处于这一明确的目的,它本身必然是逻辑中立的且独立于语言、独立于符号和独立于实现的。
在构建“受控自然语言(CNL)作为计算机程序实现基础”的系统时,可采用以下架构方案,结合形式逻辑、知识表示和AI技术,平衡模糊性与精确性:
1. 知识表示层(逻辑中立核心)
采用**描述逻辑(Description Logic)**为基础框架,构建三元组结构:
python
class Triple:
def __init__(self, subject, predicate, object):
self.subject = subject # 主体(概念/实例)
self.predicate = predicate # 谓词(属性/关系)
self.object = object # 客体(概念/字面量)
- 优势:形式逻辑基础确保数学精确性,RDF/OWL标准兼容
- 模糊处理:引入模糊隶属度因子μ∈[0,1],如
(Cat, eats, Fish) : μ=0.8
2. 语言理解层(模糊→精确转换)
多级解析流水线
mermaid
graph LR
A[自然语句] --> B(依存分析→)
B --> C[AMR解析→]
C --> D(规则重写→)
D --> E{描述逻辑公式}
- 动态本体构建:基于FrameNet框架生成领域本体
prolog
frame(eating, agent => animate_entity, food => edible_thing, manner => optional(adverb) ).
3. 推理引擎
混合推理机制
python
def reason(triples):
# 精确推理
execute_sparql("SELECT ?x WHERE { ?x rdf:type :Animal }")
# 模糊推理
if triple.predicate == "eats":
apply_rules("""
∀x, eats(x,y) ∧ Animal(y) → Predator(x)
∀x, Predator(x) → ∃y, eats(x,y)
""")
# 类比推理
analogical_inference(source_case, target_case)
4. 动态学习模块
实现增量式知识获取:
python
class KnowledgeUpdater:
def __init__(self):
self.concept_lattice = ConceptLattice()
def update(self, new_triple):
# 基于概念格的泛化
self.concept_lattice.insert(new_triple)
# 矛盾检测
if self.check_contradiction(new_triple):
self.handle_exception(new_triple)
# 基于强化学习的策略更新
self.reinforce_policies(new_triple)
5. 接口层设计
可视化DSL示例:
lisp
(define-rule
((?A 0.9) --/eats/--> (?B 0.7))
when
(instance A Cat)
(subclass B Fish)
unless
(exists ((?x Animal))
(eats B x)))
6. 实施路径
-
形式化基准:采用TPTP语言构建测试集
tptp
fof(cat_eats_fish, axiom, ! [X] : (cat(X) => ? [Y] : (fish(Y) & eats(X,Y)) )).
-
混合解析器:结合Transformer与PEG语法
python
class HybridParser: def parse(self, text): neural_rep = bert_embedding(text) logic_form = transition_parser(neural_rep) return skolemize(logic_form)
-
验证框架:使用Coq进行形式验证
coq
Lemma modus_ponens : forall P Q : Prop, (P -> Q) -> P -> Q. Proof. auto. Qed.
7. 突破性特征
-
量子启发的知识融合:
python
def quantum_fusion(a, b): # 基于张量收缩的概念合并 return torch.einsum('ijk,jl->il', a.emb, b.emb)
-
动态类型系统:
h
data Type = Base String | Union [Type] | Intersect Type Type | Neg Type
8. 评估指标
建立多维度评估体系: