java8 ConcurrentHashMap源码学习

java8 ConcurrentHashMap源码学习

ConcurrentHashMap

ConcurrentHashMap是一个HashMap的升级版,是线程安全的,想要了解ConcurrentHashMap就必须得要去了解他的put、get、扩容方法
这里必须说一下的是, 1.8的ConcurrentHashMap不是使用segment进行并发操作了, 现在太多误导人的博客了… 虽然源码中有segment但是整个put, get, 扩容的环节都与segment无关, 并没有使用segment进行并发控制

之前面试官问过我, 在concurrentHashMap中有哪些地方用到了cas, 这里列举一下

  • casTabAt, 替换table中指定下标的桶
  • transferIndex, 在扩容的时候transferIndex作为扩容的最终下标, 每个线程扩容stride个长度(扩容是从后往前的, 即从length到0), cas操作transferIndex可以保证线程安全, 每个线程成功修改transferIndex数值之后才会开始做扩容操作, 保证了每段有且仅有一个线程扩容
  • sizeCtl, 这个参数在初始化的时候是-1, 在扩容的时候是根据表长度获得的一个大负数, 每有一个线程参与扩容该负数就+1, 完成扩容则-1, 线程扩容前访问该数判断扩容是否完成, 因此这个数需要用cas操作确保线程安全
  • baseCount, 获取map的size的时候是通过baseCount与countCell统计获得的, 插入元素的时候如果baseCount的cas操作失败了则进入计数器做计数操作

put

public V put(K key, V value) {
        return putVal(key, value, false);
    }

可以看见这里调用了putVal

final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());
        // 这里binCount是用于标记当前链表的长度
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            // tab如果是空或者长度为0就进行初始化
            // 在initTable中用cas替换sizeCtl为-1保证了table在多线程下只会被一个线程初始化
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            // tabAt方法中使用了本地方法getObjectVolatile,直接从内存中获取数组指定位置的值
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            	// 该位置值为空则new一个结点使用cas替换, 这里cas保证了多线程下的原子性
            	// 若多个线程进入这一语句块, cas先比较table[i]的值是否为null, 若是则替换
            	// 所以只有一个线程的cas操作可以成功, 其他都失败
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            // MOVED代表着当前位置有线程在进行扩容迁移, 该线程会加入迁移过程
            // helpTransfer与transer操作几乎一样不多赘述
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            // table已经被初始化过了, 当前节点不为空, 并且扩容没有在进行
            else {
                V oldVal = null;
                // 将f上锁
                synchronized (f) {
                	// 再次进行判断保证i结点还是之前的i结点
                    if (tabAt(tab, i) == f) {
                    	// fh>=0说明这个f是链表, 若f是treebin, 在treebin中是没有hash这个变量的
                        if (fh >= 0) {
                            binCount = 1;
                            // 遍历f, 看看key是否已经存在
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                // key不存在, 新增一个结点
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        // 当前结点是红黑树, 直接调用putTreeVal
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                // binCount不为0说明新增了结点
                if (binCount != 0) {
                	// binCount大于等于8, 调用treeifyBin
                	// 在treeifyBin中如果table容量小于64, 则会进行扩容而不是转换为红黑树
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        // 调用addCount, 将baseCount+1或者放入counterCells中
        addCount(1L, binCount);
        return null;
    }

addCount

这个函数的功能就是将baseCount+x或者将x放入counterCells

private final void addCount(long x, int check) {
        CounterCell[] as; long b, s;
        // 首先判断计数器是否为空, 或者让s=b+x与baseCount进行cas交换, 若失败则进入语句块
        // 这里失败了就会放弃累加baseCount转而将x存入计数盒子
        if ((as = counterCells) != null ||
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
            CounterCell a; long v; int m;
            boolean uncontended = true;
            // 这里有三个判断
            // 1.计数器如果为空则直接调用fullAddCount进行计数器初始化, 上一个if中cas失败的场景
            // 2.取一个随机数同数组-1进行与运算, 就是取余获取下标, 为空则调用fullAddCount
            // 3.到了这一步即代表当前下标计数器不为空, 所以取当前值与x相加, cas交换
            // 如果第三步也失败了, 那就调用fullAddCount并且uncontended是false
            // fullAddCount就是一个计数的函数, 后面会讲到
            if (as == null || (m = as.length - 1) < 0 ||
                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                !(uncontended =
                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                fullAddCount(x, uncontended);
                return;
            }
            // 传入的binCount <= 1 就直接return不进行扩容检测
            if (check <= 1)
                return;
            // s是当前table中数据的总数, 这里包括了baseCount和counterCells中的数
            // 由于这个sumCount()的实现非常简单, 这里就不赘述了
            s = sumCount();
        }
        // 传入的binCount >= 0就进行扩容检测, 这里可以发现put过来的只要到了这一步一定会检测
        // 而addCount还有被其他方法调用, 所以这里需要做一个check判断
        if (check >= 0) {
            Node<K,V>[] tab, nt; int n, sc;
            // 这里的s就是上面的sumCount计算出来的数据
            // s要大于需要扩容的长度, 基本上是table.length * 0.75
            // 若容量已经比2^31还要大就无法扩容
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                   (n = tab.length) < MAXIMUM_CAPACITY) {
                // RESIZE_STAMP_BITS默认为16
                // 这里的rs用于标记, 是根据n和RESIZE_STAMP_BITS生成的一个高十六位负数
                int rs = resizeStamp(n);
                // sc正常来说是大于0的, 小于0的情况就是有线程在进行扩容, 那么这个线程就加入帮助
                if (sc < 0) {
                	// 这里判断扩容是否已经完成
                	// 1.sc右移16位查看标志位是否相等
                	// 2.sc如果等于rs+1说明扩容任务完成
                	// 3.帮助扩容的线程达到了了最大值
                	// 4.扩容完成的另一种判断 nextTable是空
                	// 5.transferIndex小于等于0也说明扩容任务完成
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                        break;
                    // 当前线程加入扩容任务, sc++
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                // 当前需要扩容, 但是没有线程正在进行扩容任务, 就让当前线程开启扩容任务
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                             (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);
                s = sumCount();
            }
        }
    }

fullAddCount

这一段挺难的, 牵扯到了很多种情况
这里的源码注释中建议大家去LongAdder类中看更多解释

// See LongAdder version for explanation
private final void fullAddCount(long x, boolean wasUncontended) {
        int h;
        // 获取一个随机值
        if ((h = ThreadLocalRandom.getProbe()) == 0) {
            ThreadLocalRandom.localInit();      // force initialization
            h = ThreadLocalRandom.getProbe();
            wasUncontended = true;
        }
        boolean collide = false;                // True if last slot nonempty
        for (;;) {
            CounterCell[] as; CounterCell a; int n; long v;
            if ((as = counterCells) != null && (n = as.length) > 0) {
            	// 当前的计数盒子中这个下标为空, 表示可以存放一个新的数
                if ((a = as[(n - 1) & h]) == null) {
                	// 判断这个计数器是否被上锁
                	// 因为cas操作修改了cellsBusy, 保证只有一个线程执行这一个语句块
                    if (cellsBusy == 0) {            // Try to attach new Cell
                        CounterCell r = new CounterCell(x); // Optimistic create
                        if (cellsBusy == 0 &&
                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                            // 一个创建标志
                            boolean created = false;
                            try {               // Recheck under lock
                                CounterCell[] rs; int m, j;
                                // 创建一个新的结点赋值给计数器, 最后finally将cellsBusy赋值为0
                                // 这一段看上去很像ReentrantLock的上锁解锁过程
                                if ((rs = counterCells) != null &&
                                    (m = rs.length) > 0 &&
                                    rs[j = (m - 1) & h] == null) {
                                    rs[j] = r;
                                    created = true;
                                }
                            } finally {
                                cellsBusy = 0;
                            }
                            // 如果创建成功直接break;
                            if (created)
                                break;
                            // 当前计数器不为空, 后面进入的线程获取了锁
                            // 但是这个数值已经被前一个线程缩修改了
                            continue;           // Slot is now non-empty
                        }
                    }
                    collide = false;
                }
                // cas操作已经失败过, 这个变量是addCount传入的, 表示对计数器的累加操作失败
                else if (!wasUncontended)       // CAS already known to fail
                    wasUncontended = true;      // Continue after rehash
                // 与addCount中的cas操作一样, 给计数器累加值, 成功就跳出, 失败就往下
                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
                    break;
                // 如果有其他线程创建了新的counterCells或者counterCells的容量大于cpu核心数
                else if (counterCells != as || n >= NCPU)
                    collide = false;            // At max size or stale
                // collide是扩容标志, 如果不允许扩容就会一直在上一步停留, 到了这一步就会允许扩容
                // 然后在下一次循环中直接进入扩容步骤
                else if (!collide)
                    collide = true;
                // 扩容步骤, cas获取锁, 扩容完毕后, 将扩容标志改为false并重新取一个随机数
                else if (cellsBusy == 0 &&
                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                    try {
                        if (counterCells == as) {// Expand table unless stale
                            CounterCell[] rs = new CounterCell[n << 1];
                            for (int i = 0; i < n; ++i)
                                rs[i] = as[i];
                            counterCells = rs;
                        }
                    } finally {
                        cellsBusy = 0;
                    }
                    collide = false;
                    continue;                   // Retry with expanded table
                }
                h = ThreadLocalRandom.advanceProbe(h);
            }
            // 由于if中判断的counterCells是空, 所以需要初始化计数盒子, cas获取锁
            else if (cellsBusy == 0 && counterCells == as &&
                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                // 初始化成功标志
                boolean init = false;
                // 初始容量是2, 然后将x放入这个计数盒子
                try {                           // Initialize table
                    if (counterCells == as) {
                        CounterCell[] rs = new CounterCell[2];
                        rs[h & 1] = new CounterCell(x);
                        counterCells = rs;
                        init = true;
                    }
                } finally {
                    cellsBusy = 0;
                }
                if (init)
                    break;
            }
            // 计数盒子为空且cellsBusy是1就给baseCount进行cas加操作
            // 这里只是做第二次尝试, 如果成功则不需要走计数器
            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
                break;                          // Fall back on using base
        }
    }

transfer

这个方法是扩容的主要方法, 很长

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        // 这里的stride用于给线程分配任务, 这里有n个位置需要进行迁移
        // 即一个线程需要处理的是transferIndex - stride ~ transferIndex个位置
        // 这里根据cpu核心数和n来制定, stride最小为16
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        // 初始化, 传入的nextTab如果是空, 说明需要初始化, 新数组比旧数组的容量大一倍
        // 这里的初始化由外围调用的方法保证只被初始化一次
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
            	// 扩容失败, 超出数组最大长度
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            // 这里的transferIndex就是上面说的线程分配任务的标志位
            // 任务分配是数组从后往前分配的
            transferIndex = n;
        }
        int nextn = nextTab.length;
        // 这里的ForwardingNode的hash值就是前面提到的MOVED, 只要一个结点是ForwardingNode
        // 那么其他线程处理到这个结点的时候可以直接跳过
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        // advance是一个标志位, 表示迁移能否进行
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        // 从后往前
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            // advance为true表示可以进行迁移
            // 这里的i可以理解为是指向transferIndex的, 而bound指向transferIndex - stride
            while (advance) {
                int nextIndex, nextBound;
                // 这里就是判断迁移工作是否已经被分配
                // 前面说过一个线程完成stride个位置, i如果等于bound说明已经完成了stride个任务
                if (--i >= bound || finishing)
                    advance = false;
                // 这里是判断所有的迁移工作是否分配完毕, 因为transferIndex是从后往前的
                // 所以如果transferIndex<=0那么就说明所有迁移任务都分配完了了
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                // 当前线程获取这个stride的任务, 前面判断当前的迁移工作并未被分配
                // 所以将transferIndex - stride, 告诉后面线程这个工作我承包了
                // 如果transferIndex <= stride就直接将transferIndex 变为0
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            // 经过了while循环获取了工作的线程可以开始迁移工作
            // 这里三个判断条件都是判断这个i是否符合迁移条件
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                // finishing为true表示所有工作已经完成
                // 这里进行赋值处理
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                // 这里用cas对sc-1表示当前线程完成了自己的工作, addCount中有说到sc的作用
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                	// 这里是判断是否所有的迁移工作都已经完成
                	// 如果不是所有的工作都做完, 那就退出方法
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    // 说明所有工作都已经完成, 这是最后一个处理任务的线程, 他需要负责赋值的工作
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            // 如果f结点是空, 那么用cas替换将tab[i]进行标记, 直接处理完毕
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            // 这里表示这个节点已经被处理过
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
            	// 开始加锁处理迁移
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                    	// 接下来的操作跟HashMap中的resize操作极其相似
                    	// 都是将当前的链表一分为二, 一部分放在当前位置i, 一部分放在i+n
                    	// 至于为什么可以这样操作在最后会讲
                        Node<K,V> ln, hn;
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            // cas操作替换值
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        // 红黑树的替换过程
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            // 到此为止与链表的操作无异, 也是将结点一分为二生成两个链表
                            // 这里多了个判断, 如果链表长度<=6, 那么新结点中存放的是链表
                            // 否则, 判断另一个链表是否为空, 如果是, 不需要重新构造树
                            // 如果不是, 那么就要重新构造一棵树
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

这里讲一下链表可以一分为二
假设n是16将要扩容为32
因为16是10000, 存入table中是同1111进行与运算的, 而存入新的table中是同11111进行与运算的
新数组中i存放的数据与i+n存放的数据唯一不同在于第五位二进制数是不是1
如果是1那么就是存放在i+n的 如果是0就是存放在i中的
所以为了判断第五位是不是1, 就可以同16进行与运算如果第五位是0, 那么他们与运算得出的结果就是0
所以可以把这个结点放入lo中, 而结果不为0的就可以存放到i+n中
这个结果跟利用hash值重新同32-1进行与运算得出的结果一致

后记

写完这一篇学习记录之后, 更加清楚了ConcurrentHashMap中这几个方法的用处, 阅读源码真的提升很大, ConcurrentHashMap中的并发设计十分精妙
而这一篇学习记录也仅仅是将put的流程讲述了一遍

java8 ConcurrentHashMap源码学习2

============4.20更新============
之前就一直有一个疑惑, 为什么table需要使用tabAt()这个方法去获取
    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    }
	public native Object getObjectVolatile(Object var1, long var2);

通过以上代码可以看见, tabAt就是使用Unsafe类中的本地方法, 直接从内存中获取这个对象, 使用的是tab的内存地址+索引的偏移量去读取, 可是table和Node中的next在ConcurrentHashMap中本身就是用volatile关键字修饰的, 直接读取也是保证可见性的
所以这个问题无法从这个出发点去解决, 后来阅读了ArrayList的源码之后发现, 数组类在jvm中会自动检测数组的越界问题

对于数组类型,每一维度将使用一个前置的“[”字符来描述,如一个定义为“java.lang.String[][]”类型 的二维数组将被记录成“[[Ljava/lang/String;”,一个整型数组“int[]”将被记录成“[I”。

如果C是一个数组类型,并且数组的元素类型为对象,也就是N的描述符会是类 似“[Ljava/lang/Integer”的形式,那将会按照第一点的规则加载数组元素类型。如果N的描述符如前面所 假设的形式,需要加载的元素类型就是“java.lang.Integer”,接着由虚拟机生成一个代表该数组维度和元 素的数组对象。

上面是深入理解java虚拟机一书中与数组类型有关的内容, 第二段是类加载的解析阶段中所描述的, 所以Node<K, V>[]会先被包装成一个数组类, 所以如果在数组中获取下标为-1的元素会直接抛出异常
这可能会带来一些性能的消耗, 所以这里使用Unsafe直接去操作内存读取可能是出于性能方面的优化考量

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值