哈理工邀请赛 F.Fibonacci Again (矩阵快速幂)

题目地址:点击打开链接


比赛的时候打表找到了规律,6个一循环,可以前没做过类似的周期递推的求矩阵快速幂..没构造出来。


以下参考博客:点击打开链接

解题思路:解决本题的一个关键就是发现其表达式和原来的斐波那契数列的不同,通过打表分析观察,可以发现一个以6为周期的循环。


通过这些表达式就可以将这道问题转化成常见的矩阵快速幂问题了,因为后面存在常数项,所以需要构造一个7*7的矩阵。微笑



(这图最右那矩阵下面少了个1)





由此就可以套用矩阵快速幂的思路解决此题了~


代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int mod = 1e9+7;
int f[7] = {7, 11, 18, 28, 46, 75, 1};
struct node
{
    ll s[7][7];
    void init() { memset(s, 0, sizeof(s)); }
};

node mul(node a, node b)
{
    node t;
    t.init();
    for(int i = 0; i < 7; i++)
        for(int j = 0; j < 7; j++)
            for(int k = 0; k < 7; k++)
                t.s[i][j] = (t.s[i][j]+a.s[i][k]*b.s[k][j])%mod;
    return t;
}

node mt_pow(node p, int n)
{
    node q;
    q.init();
    for(int i = 0; i < 7; i++) q.s[i][i] = 1;
    while(n)
    {
        if(n&1) q = mul(p, q);
        p = mul(p, p);
        n /= 2;
    }
    return q;
}

void show(node a)
{
    for(int i = 0; i < 7; i++)
        for(int j = 0; j < 7; j++)
            printf("%d%c", a.s[i][j], j==6 ? '\n' : ' ');
}

int main(void)
{
    int n;
    while(cin >> n)
    {
        node base;
        base.init();
        base.s[0][4] = 1, base.s[0][5] = 1, base.s[0][6] = 0;
        base.s[1][4] = 1, base.s[1][5] = 2, base.s[1][6] = 1;
        base.s[2][4] = 2, base.s[2][5] = 3, base.s[2][6] = 1;
        base.s[3][4] = 3, base.s[3][5] = 5, base.s[3][6] = 1;
        base.s[4][4] = 5, base.s[4][5] = 8, base.s[4][6] = 2;
        base.s[5][4] = 8, base.s[5][5] = 13, base.s[5][6] = 4;
        base.s[6][4] = 0, base.s[6][5] = 0, base.s[6][6] = 1;
        node temp = mt_pow(base, n/6);
//        show(temp);
        ll ans[7] = {0};
        for(int i = 0; i < 7; i++)
            for(int j = 0; j < 7; j++)
                ans[i] = (ans[i]+temp.s[i][j]*f[j])%mod;
        printf("%lld\n", ans[n%6]);
    }
    return 0;
}


Description
There are another kind of Fibonacci numbers: F(0) = 7,
F(1) = 11, F(n) = (F(n-1) + F(n-2)) xor (n&1) (n>=2).
Input
Input consists of a sequence of lines, each containing
an integer n. (0<=n < 1,000,000,000).
Output
Output F(n) mod 1000000007.
Sample Input
2 3 4 5
- 10 -
Sample Output
18
28
46
75



  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值