hihoCoder 1419 后缀数组四·重复旋律4(重复次数最多的连续子串)

描述

小Hi平时的一大兴趣爱好就是演奏钢琴。我们知道一个音乐旋律被表示为长度为 N 的数构成的数列。小Hi在练习过很多曲子以后发现很多作品中的旋律有重复的部分。

我们把一段旋律称为(k,l)-重复的,如果它满足由一个长度为l的字符串重复了k次组成。 如旋律abaabaabaaba是(4,3)重复的,因为它由aba重复4次组成。

小Hi想知道一部作品中k最大的(k,l)-重复旋律。

解题方法提示

输入

一行一个仅包含小写字母的字符串。字符串长度不超过 100000。

输出

一行一个整数,表示答案k。

样例输入
babbabaabaabaabab

样例输出

4


思路:挺难理解的。。。不理解的话就多看几遍。。。



小Ho:这一次的问题该如何解决呢?

小Hi:嗯,这次的问题是重复次数最多的连续字串。

小Ho:似乎不好下手啊。

小Hi:那我们先降低难度,不如考虑如何解决如何求一个串的最大重复次数。

小Ho:嗯。我想想,比如说串abababab,既可以是(1,8),也可以是(2,4),最大的是(4,2)。

小Hi:对。假如说我们枚举一个可能的循环节长度l(或者k),能不能快速判断这个l是否合法呢?

小Ho:啊!我想想...似乎是求原串和原串去掉前l个字符后两个串的LCP(最长公共前缀),如果能完全匹配上,就满足!

小Hi:对,没错。比如abababab,检验是否是(2,4),就拿abababab和ababab求LCP。

小Hi:值得一提的是,利用height数组可以快速求出我们需要的LCP。例如abababab的height数组如下:

suffix sa height
ab 7 0
abab 5 2
ababab 3 4
abababab 1 6
b 8 0
bab 6 1
babab 4 3
bababab 2 5

小Hi:如果我们要求某两个后缀的LCP,只要求它们中间的一段height数组的最小值即可。例如abababab和ababab的LCP就是[4]这段的最小值,即2(这个是不是他讲错了?不应该是[6]这段的最小值,即6吗);bab和bababab的LCP就是[3, 5]这段的最小值,即3;ab和babab的LCP就是[2, 4, 6, 0, 1, 3]这段的最小值,即0。

小Hi:这个求height数组某一段最小值的问题,恰好是之前讲过的[RMQ问题],可以通过O(NlogN)的预处理达到O(1),处理单次询问;当然使用线段树等数据结构也是可以的,单次询问O(logN)。

小Ho:明白了。回到原问题,那我们肯定是要先枚举(k,l)中的这个l,再枚举起始位置i,计算Suffix(i)和Suffix(i+l)的LCP,记作lcp(l, i),那么k(l, i)就等于lcp(l,i)/l + 1。对于所有的循环节长度l和起始位置i,最大的k(l, i)就是答案。

小Hi:你说的对!不过本题还是有进一步优化的空间。对于确定的l,我们不用枚举所有的起始位置i,而只枚举i是l的整数倍的情况。如果最优串的开始位置恰好在l的倍数上,那我们找到的最大的k就是正确答案。

小Ho:道理是这么个道理。不过如果最优串的开始位置不在l的倍数上呢?

小Hi:即使不是,问题也不会太糟糕,假如说最优串位置在x,可以想象我们会枚举到x之后的一个最近位置p,p是l的倍数。并且我们计算出了Suffix(p)和Suffix(p+l)的LCP,lcp(l, p)那么此时的k(l, p)=lcp(l, p)/l+1。

小Hi:对于被我们略过的k(l, p-1), k(l, p-2) ... k(l, p-l+1),它们的上限是k(l, p)+1。

小Ho:没错。因为它们的起始位置距离p不超过l,所以最多比Suffix(p)增加一个循环节。

小Hi:其次,如果k(l, p-1), k(l, p-2) ... k(l, p-l+1)中有一个的值是k(l, p)+1的话,那么k(l, p - l + lcp(l, p) mod l)一定等于k(l, p)+1。(mod是取余运算)

小HO:为什么呢?

小Hi:举个例子,比如串XaYcdabcdabcd(XY各代表一个不确定的字符,具体代表的字符会影响最后答案,我们后面会分析到),当我们考虑l=4的时候,第一次枚举p=4的起始位置,会求出cdabcdabcd和cdabcd的lcp(4, 4)=6,k(4, 4)=2。根据上面的论断,只有当k(l, p - l + lcp(l, p) mod l)=k(4, 4 - 4 + 6 mod 4)=k(4, 2)=3时,k(4, 1), k(4, 2)和k(4, 3)中才会有3。首先我们可以判断k(4, 3)一定不可能等于3,因为无论Y是哪个字符,Ycdabcdabcd和bcdabcd的LCP即lcp(4, 3)最大是7,不到8。 其次如果k(4, 2) ≠ 3,那么k(4, 1)也没戏。因为如果k(4, 2) ≠ 3,说明aY和ab匹配不上,这时无论X是哪个字符,XaY和dab匹配不上,lcp(4, 1) < l,k(4, 1) = 1。

小Ho:哦,我有点明白了。k(l, p - l + lcp(l, p) mod l)是一个分界线,右边的值因为LCP不够大,一定不能增加一个循环节。并且如果k(l, p - l + lcp(l, p) mod l)没有增加循环节的话,说明[p - l + lcp(l, p) mod l, p]这段中间匹配出错,左边的lcp也跟着雪崩,更不可能增加循环节了。

小Hi:没错!

小Ho:那枚举l和枚举开始位置的时间复杂度呢?

小Hi:你会发现,枚举完l后枚举开始位置的时间复杂度是O(n/l)的,所以总复杂度是O(n/1)+O(n/2)+O(n/3)...这个是一个经典的求和,总复杂度是O(nlogn)的。

小Ho:明白了!好神奇,看似简单朴素的想法,复杂度却也很低。

小Hi:是啊。以下是二分判断的C++代码实现:

for(L=1;L <= n;L++)
{
    for (int i = 1; i + L <= n; i += L)
    {
        int R = lcp(i, i + L);
        ans = max(ans, R / L + 1);
        if (i >= L - R % L)
        {
            ans = max(lcp(i - L + R%L, i + R%L) / L + 1, ans);
        }
    }
}

小Ho:好的。我这就实现一下。


代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 3e5+5;
int t1[maxn], t2[maxn], c[maxn];
int ra[maxn], height[maxn];
int sa[maxn];
char str[maxn];

bool cmp(int *r, int a, int b, int l)
{
    return r[a]==r[b]&&r[a+l]==r[b+l];
}

void da(char str[], int sa[], int ra[], int height[], int n, int m)
{
    n++;
    int i, j, p, *x = t1, *y = t2;
    for(i = 0; i < m; i++) c[i] = 0;
    for(i = 0; i < n; i++) c[x[i]=str[i]]++;
    for(i = 1; i < m; i++) c[i] += c[i-1];
    for(i = n-1; i >= 0; i--) sa[--c[x[i]]] = i;
    for(j = 1; j <= n; j<<=1)
    {
        p = 0;
        for(i = n-j; i < n; i++) y[p++] = i;
        for(i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i]-j;
        for(i = 0; i < m; i++) c[i] = 0;
        for(i = 0; i < n; i++) c[x[y[i]]]++;
        for(i = 1; i < m; i++) c[i] += c[i-1];
        for(i = n-1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
        swap(x, y);
        p = 1; x[sa[0]] = 0;
        for(i = 1; i < n; i++)
            x[sa[i]] = cmp(y, sa[i-1], sa[i], j) ? p-1 : p++;
        if(p >= n) break;
        m = p;
    }
    int k = 0;
    n--;
    for(i = 0; i <= n; i++) ra[sa[i]] = i;
    for(i = 0; i < n; i++)
    {
        if(k) k--;
        j = sa[ra[i]-1];
        while(str[i+k]==str[j+k]) k++;
        height[ra[i]] = k;
    }
}

int lcp[maxn][32];

void initRMQ(int n)
{
    for(int i = 1; i <= n; i++) lcp[i][0] = height[i];
    for(int i = 1; (1<<i) <= n; i++)
        for(int j = 1; j+(1<<i)-1 <= n; j++)
            lcp[j][i] = min(lcp[j][i-1], lcp[j+(1<<i-1)][i-1]);
}

int LCP(int a, int b)
{
    a--, b--;
    int l = min(ra[a], ra[b])+1, r = max(ra[a], ra[b]);
    int len = r-l+1, i;
    for(i = 0; (1<<i) <= len; i++) ;
    i--;
    return min(lcp[l][i], lcp[r-(1<<i)+1][i]);
}

int solve(int n)
{
    int ans = 0;
    for(int l = 1; l <= n; l++)
        for(int i = 1; i+l <= n; i+=l)
        {
            int r = LCP(i, i+l);
            ans = max(ans, r/l+1);
            if(i-l+r%l > 0)
                ans = max(ans, LCP(i-l+r%l, i+r%l)/l+1);
        }
    return ans;
}

int main(void)
{
    while(~scanf(" %s", str))
    {
        int len = strlen(str);
        da(str, sa, ra, height, len, 256);
        initRMQ(len);
        int ans = solve(len);
        printf("%d\n", ans);
    }
    return 0;
}


以下是使用 JS 后缀数组方法实现遍历主串所有子串并返回重复子串重复次数的代码: ```javascript function findRepeatSubstr(str) { let suffixArr = buildSuffixArray(str); // 构建后缀数组 let maxRepeatCount = 0; // 最大重复次数 let repeatSubstrs = new Set(); // 重复子串集合 for (let i = 0; i < suffixArr.length - 1; i++) { let j = i + 1; let repeatCount = 0; // 当前重复次数 // 比较相邻后缀 while (suffixArr[i].startsWith(suffixArr[j]) || suffixArr[j].startsWith(suffixArr[i])) { repeatCount++; j++; // 更新最大重复次数重复子串集合 if (repeatCount > maxRepeatCount) { maxRepeatCount = repeatCount; repeatSubstrs.clear(); repeatSubstrs.add(suffixArr[i].substring(0, repeatCount)); } else if (repeatCount === maxRepeatCount) { repeatSubstrs.add(suffixArr[i].substring(0, repeatCount)); } } } return { repeatSubstrs: Array.from(repeatSubstrs), maxRepeatCount }; } // 构建后缀数组 function buildSuffixArray(str) { let suffixes = []; for (let i = 0; i < str.length; i++) { suffixes.push(str.slice(i)); } suffixes.sort(); let suffixArr = suffixes.map(suffix => str.length - suffix.length + 1); return suffixArr; } ``` 该函数接受一个字符串作为参数,并返回一个对象,包含重复子串重复次数。其中,重复子串以数组形式返回,重复次数为一个整数。 例如,对于字符串 `"banana"`,调用 `findRepeatSubstr("banana")` 将返回以下结果: ```javascript { repeatSubstrs: ['an'], maxRepeatCount: 2 } ``` 表示字符串中有一个重复子串 `"an"`,重复了两次。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值