HDU 5117 Fluorescent (数学 状压DP)

43 篇文章 0 订阅

题意:有n个灯泡,初始均为关闭状态,m个开关,每个开关可以改变一些灯泡的状态(开变关,关变开),打开每个

开关的操作是随机等概率的,以X表示每次开着灯泡的数量,求E(x^3) *2^m % 1e9+7


思路:原式可以分解为∑X3 ,X =(x1+x2+x3...+xn),其中xi表示第i个灯的状态,题目就转化为求各个状态下X的立方

X^3=(x1+x2+x3...xn)*(x1+x2+x3...xn)*(x1+x2+x3...xn) = ∑(Xi * Xj * Xk) (1 <= i, j,k <= n),那么我们只要

于所有xi*xj*xk在所有状态中能为1的方法数,也就是i,j,k三灯全亮的方法数,加起来就是答案。


固定i,j,k,以dp[s][t]表示操作前s个开关后这三个灯泡的开闭状态为t的情况数(0<=t<=7),那么有dp[s][t]=dp[s-1]

[t]+dp[s-1][t^temp],其中temp为第s个开关对这三个灯泡操作的状态(例如temp=7表示打开这三个开关,temp=3表

打开前两个灯泡),此处dp数组第一位还可以滚动来节省空间 

枚举i,j,k,累加dp[m][7]即为答案

(摘自:点击打开链接


完整思路:点击打开链接

1、首先注意到N<=50,M<=50,因此很容易想到状压;

2、最开始考虑的是算出每种情况下对应的方案数,然后依次dp,但是数据量太大;

3、正解是直接考虑X^3,其中X就是每种状况下亮着的灯的数量;

4、如何解这个X^3?我们把它展开——

X=x1+x2+x3+...+xn,其中xi是第i个灯的亮或暗状况;

因此X^3=(x1+x2+x3+...+xn)*(x1+x2+x3+...+xn)*(x1+x2+x3+...+xn)=Σxi*xj*xk  (1<=i<=j<=k<=n);

5、dp[m][state]代表前m个开关,达成状态为state的方案数,其中state从(000)2~(111)2,代表三个灯的亮或灭;在其基础上dp就行了;

6、答案每次加上dp[m][7],因为只有xi=xj=xk=1时,才对X^3有贡献,总复杂度O(n^3*m);


代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn = 55;
const int mod = 1e9+7;
ll d[maxn], dp[maxn][maxn];
int n, m;

int main(void)
{
    int t, ca = 1;
    cin >> t;
    while(t--)
    {
        memset(d, 0, sizeof(d));
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= m; i++)
        {
            int k;
            scanf("%d", &k);
            while(k--)
            {
                int tmp;
                scanf("%d", &tmp);
                d[i] |= 1LL<<(tmp-1);
            }
        }
        ll ans = 0;
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                for(int k = 1; k <= n; k++)
                {
                    memset(dp, 0, sizeof(dp));
                    dp[0][0] = 1;
                    for(int l = 1; l <= m; l++)
                    {
                        int tmp = 0;
                        if((d[l]>>(i-1))&1) tmp += 1;
                        if((d[l]>>(j-1))&1) tmp += 2;
                        if((d[l]>>(k-1))&1) tmp += 4;
                        for(int m = 0; m < 8; m++)
                        {
                            dp[l][m] += dp[l-1][m]; //不按
                            dp[l][m] += dp[l-1][m^tmp]; //按
                        }
                    }
                    ans = (ans+dp[m][7])%mod;
                }
        printf("Case #%d: %lld\n", ca++, ans);
    }
    return 0;
}


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值