HDU 5117 Fluorescent (状压DP+思维)*

这篇博客详细探讨了HDU 5117 'Fluorescent'问题的解决方案,重点在于利用状态压缩动态规划(状压DP)的方法进行求解,同时引导读者理解并应用此类思维解决类似问题。
摘要由CSDN通过智能技术生成

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5117

#include<bits/stdc++.h>
using namespace std;

#define debug puts("YES");
#define rep(x,y,z) for(int (x)=(y);(x)<(z);(x)++)
#define ll long long

#define lrt int l,int r,int rt
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define root l,r,rt
const int  maxn =1e5+5;
const int mod=1e9+7;
const int ub=1e6;
ll powmod(ll x,ll y){ll t; for(t=1;y;y>>=1,x=x*x%mod) if(y&1) t=t*x%mod; return t;}
ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
/*
题目大意:给定
m个集合,每个集合有x个不同的数,
对于这m个集合的一个子集运算,
定义为:将其状态异或起来后1的数量三次方。

首先常规做法是直接子集枚举复杂度是1<<53不能承受,
那么进一步分析特征,令x=sigma ai,
就是说最后的期望其实是:
sigma E(ai*aj*ak) i,j,k均是1到n,
对于每个组合i,j,k,在给定的m个集合中有多少种方案数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值