题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5117
#include<bits/stdc++.h>
using namespace std;
#define debug puts("YES");
#define rep(x,y,z) for(int (x)=(y);(x)<(z);(x)++)
#define ll long long
#define lrt int l,int r,int rt
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define root l,r,rt
const int maxn =1e5+5;
const int mod=1e9+7;
const int ub=1e6;
ll powmod(ll x,ll y){ll t; for(t=1;y;y>>=1,x=x*x%mod) if(y&1) t=t*x%mod; return t;}
ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
/*
题目大意:给定
m个集合,每个集合有x个不同的数,
对于这m个集合的一个子集运算,
定义为:将其状态异或起来后1的数量三次方。
首先常规做法是直接子集枚举复杂度是1<<53不能承受,
那么进一步分析特征,令x=sigma ai,
就是说最后的期望其实是:
sigma E(ai*aj*ak) i,j,k均是1到n,
对于每个组合i,j,k,在给定的m个集合中有多少种方案数,
使得这三个灯亮着,这就要状压计数一波了(有点像背包)
开二维DP,对于当前位置的集合,有选和不选两中选择。
如此累计下去即可。
*/
ll sta[60];///状态数
ll dp[8][60],ans;
int n,m,x,y;
int main()
{
int t;scanf("%d",&t);
for(int ca=1;ca<=t;ca++)
{
memset(sta,0,sizeof(sta));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d",&x);
for(int j=1;j<=x;j++)
{
scanf("%d",&y);
sta[i]|=(1LL<<y);
}
}
ans=0;
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) for(int k=1;k<=n;k++)
{
memset(dp,0,sizeof(dp));dp[0][0]=1;///初始化DP数组
for(int p=0;p<m;p++) for(int q=0;q<8;q++) if(dp[q][p])
{
int u=q;
if(sta[p+1]&(1LL<<i)) u^=1;
if(sta[p+1]&(1LL<<j)) u^=2;
if(sta[p+1]&(1LL<<k)) u^=4;
(dp[u][p+1]+=dp[q][p])%=mod;
(dp[q][p+1]+=dp[q][p])%=mod;
}
(ans+=dp[7][m])%=mod;
}
printf("Case #%d: %lld\n",ca,ans);
}
return 0;
}