题意:现在有n个点,编号为0至n-1, 满足i<j的任意两点连一条i^j流量的边,问0到n-1的最大流。 n<=1e18
思路:n这么大。。上来就先打个表看下规律吧,结果发现每项与上一项的差值有个规律,相邻2^k的差值为2^(k*2)+1,简单来说就是每个差值(2^(k*2)+1)都从一个位置开始,每隔一定距离出现一次,一个位置同时可能是多个数的话取最大的那个。可以看看表:
知道了这个规律,统计下每种差值在1-n内他出现的次数,最后求和下就行,因为有些位置同时出现多种差值的情况需要取大的那个,所以倒着容斥一下就行,减掉出现过的个数。
代码:
#include<bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
typedef long long ll;
ll fac[63] = {1, 1}, start[63] = {0, 3};
ll ans[100], step[100] = {1, 1};
ll num[100];
void init()
{
for(int i = 2; i <= 61; i++)
fac[i] = fac[i-1]*2*2%mod, step[i] = step[i-1]*2;
start[2] = 5;
for(int i = 3; i <= 61; i++)
start[i] = start[i-1]*2-1;
for(int i = 1; i <= 61; i++)
start[i] -= step[i];
}
int main(void)
{
init();
ll n;
while(~scanf("%lld", &n))
{
memset(ans, 0, sizeof(ans));
memset(num, 0, sizeof(num));
ll pre = 0;
for(int i = 61; i >= 1; i--)
{
num[i] = ((max(0LL, n-start[i])/step[i])-pre+mod)%mod;
ans[i] = num[i]*(fac[i]+1)%mod;
pre = (pre+num[i])%mod;
}
ll res = 1;
for(int i = 1; i <= 61; i++)
res = (res+ans[i])%mod;
printf("%lld\n", res);
}
return 0;
}
打表代码:
#include<bits/stdc++.h>
using namespace std;
const int INF = 1e9;
const int maxn = 1e3+5;
const int maxv = 1e6+7;
int head[maxv], cur[maxv], d[maxv], s, t, k, sum;
int n, m, dis[maxn];
struct node
{
int v, w, next;
}edge[maxv];
void addEdge(int u, int v, int w)
{
edge[k].v = v;
edge[k].w = w;
edge[k].next = head[u];
head[u] = k++;
edge[k].v = u;
edge[k].w = 0;
edge[k].next = head[v];
head[v] = k++;
}
int bfs()
{
memset(d, 0, sizeof(d));
d[s] = 1;
queue<int> q;
q.push(s);
while(!q.empty())
{
int u = q.front();
if(u == t) return 1;
q.pop();
for(int i = head[u]; i != -1; i = edge[i].next)
{
int to = edge[i].v, w = edge[i].w;
if(w && d[to] == 0)
{
d[to] = d[u] + 1;
if(to == t) return 1;
q.push(to);
}
}
}
return 0;
}
int dfs(int u, int maxflow)
{
if(u == t) return maxflow;
int ret = 0;
for(int i = cur[u]; i != -1; i = edge[i].next)
{
int to = edge[i].v, w = edge[i].w;
if(w && d[to] == d[u]+1)
{
int f = dfs(to, min(maxflow-ret, w));
edge[i].w -= f;
edge[i^1].w += f;
ret += f;
if(ret == maxflow) return ret;
}
}
return ret;
}
int Dinic()
{
int ans = 0;
while(bfs() == 1)
{
memcpy(cur, head, sizeof(head));
ans += dfs(s, INF);
}
return ans;
}
int main(void)
{
int e;
while(~scanf("%d", &e))
{
int pre = 0;
for(int i = 2; i <= e; i++)
{
n = i;
memset(head, -1, sizeof(head));
s = 0, t = n-1; k = 0, sum = 0;
for(int i = 0; i < n; i++)
{
for(int j = i + 1; j < n; j++)
{
if(j == n-1) dis[i] = i ^ j, sum += i ^ j;
addEdge(i, j, i^j);
}
}
int cur = Dinic();
printf("%2d: %3d 差值:%3d\n", i, cur, cur-pre);
pre = cur;
}
}
return 0;
}