目录
7、排序前截取算子 - takeOrdered(n)[(ordering)]
一、RDD的处理过程
- Spark用Scala语言实现了RDD的API,程序开发者可以通过调用API对RDD进行操作处理。RDD经过一系列的“转换”操作,每一次转换都会产生不同的RDD,以供给下一次“转换”操作使用,直到最后一个RDD经过“行动”操作才会被真正计算处理,并输出到外部数据源中,若是中间的数据结果需要复用,则可以进行缓存处理,将数据缓存到内存中。
二、RDD算子
- RDD被创建后是只读的,不允许修改。Spark提供了丰富的用于操作RDD的方法,这些方法被称为算子。一个创建完成的RDD只支持两种算子:
转换(Transformation)
算子和行动(Action)
算子。
1、转换算子
- RDD处理过程中的“转换”操作主要用于根据已有RDD创建新的RDD,每一次通过Transformation算子计算后都会返回一个新RDD,供给下一个转换算子使用。
- 常用转换算子操作的API
转换算子 | 相关说明 |
filter(func) | 筛选出满足函数func的元素,并返回一个新的数据集 |
map(func) | 将每个元素传递到函数func中,返回的结果是一个新的数据集 |
flatMap(func) | 与map()相似,但是每个输入的元素都可以映射到0或者多个输出结果 |
groupByKey() | 应用于(Key,Value)键值对的数据集时,返回一个新的(Key,Iterable <Value>)形式的数据集 |
reduceByKey(func) | 应用于(Key,Value)键值对的数据集时,返回一个新的(Key,Value)形式的数据集。其中,每个Value值是将每个Key键传递到函数func中进行聚合后的结果 |
2、行动算子
- 行动算子主要是将在数据集上运行计算后的数值返回到驱动程序,从而触发真正的计算。
- 常用行动算子操作的API
行动算子 | 相关说明 |
count() | 返回数据集中的元素个数 |
first() | 返回数组的第一个元素 |
take(n) | 以数组的形式返回数组集中的前n个元素 |
reduce(func) | 通过函数func(输入两个参数并返回一个值)聚合数据集中的元素 |
collect() | 以数组的形式返回数据集中的所有元素 |
foreach(func) | 将数据集中的每个元素传递到函数func中运行 |
三、准备工作
1、准备文件
1.1、准备本地文件
- 在
/home
目录里创建words.txt
1.2、把文件上传到HDFS
- 将
words.txt
上传到HDFS系统的/park
目录里
- 查看文件内容
2、启动Spark Shell
2.1、启动HDFS服务
- 执行命令:
start-dfs.sh
2.2、启动Spark服务
- 执行命令:
start-all.sh
2.3、启动Spark Shell
- 执行名命令:
spark-shell --master spark://master:7077
- 以集群模式启动的Spark Shell,不能访问本地文件,只能访问HDFS文件,加不加
hdfs://192.168.219.75:9000
前缀都是一样的效果。
四、掌握转换算子
- 转换算子负责对RDD中的数据进行计算并转换为新的RDD。Spark中的所有转换算子都是
惰性
的,因为它们不会立即计算结果,而只是记住
对某个RDD的具体操作过程,直到遇到行动算子才会与行动算子一起执行。
1、映射算子 - map()
1.1、映射算子功能
- map()是一种转换算子,它接收一个函数作为参数,并把这个函数应用于RDD的
每个
元素,最后将函数的返回结果作为结果RDD中对应元素的值。
1.2、映射算子案例
- 执行命令:
val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5, 6))
- 将rdd1每个元素翻倍得到rdd2
- 对
rdd1
应用map()算子,将rdd1
中的每个元素平方并返回一个名为rdd2
的新RDD
-
上述代码中,向算子map()传入了一个函数
x = > x * 2
。其中,x
为函数的参数名称,也可以使用其他字符,例如a => a * 2
。Spark会将RDD中的每个元素传入该函数的参数中。 -
其实,利用神奇占位符
_
可以写得更简洁
rdd1
和rdd2
中实际上没有任何数据,因为parallelize()
和map()
都为转化算子,调用转化算子不会立即计算结果。
-
若需要查看计算结果,则可使用行动算子
collect()
。(collect是采集或收集之意) -
执行
rdd2.collect
进行计算,并将结果以数组
的形式收集到当前Driver
。因为RDD的元素为分布式的,数据可能分布在不同的节点上。
- 将rdd1每个元素平方得到rdd2
- 方法一、采用普通函数作为参数传给map()算子
-
方法二、采用下划线表达式作为参数传给map()算子
- 转化成整数
- 利用映射算子打印菱形
- Spark Shell里实现
- 菱形正立的等腰三角形和倒立的等腰三角形组合而成
- 右半菱形
- 加上前导空格,左半菱形
- 前导空格折半,显示菱形
- 在IDEA里创建项目实现
import org.apache.spark.{SparkConf, SparkContext}
import scala.collection.mutable.ListBuffer
import scala.io.StdIn
object Example01 {
def main(args: Array[String]): Unit = {
// 创建Spark配置对象
val conf = new SparkConf()
.setAppName("PrintDiamond") // 设置应用名称
.setMaster("local[*]") // 设置主节点位置(本地调试)
// 基于Spark配置对象创建Spark容器
val sc = new SparkContext(conf)
// 输入一个奇数
print("输入一个奇数:")
val n = StdIn.readInt()
// 创建一个可变列表
val list = new ListBuffer[Int]()
// 给列表赋值
(1 to n by 2).foreach(list.append(_))
(n - 2 to 1 by -2).foreach(list.append(_))
// 基于列表创建rdd
val rdd = sc.makeRDD(list)
// 对rdd进行映射操作
val rdd1 = rdd.map(i => " " * ((n - i) /2 ) + "*" * i)
// 输出rdd1结果
rdd1.collect.foreach(println)
}
}
- 如果用户输入一个偶数,会出现什么情况?
- 修改一下代码,避免这个问题