大数据学习笔记 3.2 RDD算子学习

目录

一、RDD的处理过程

 二、RDD算子

1、转换算子 

 2、行动算子

三、准备工作

1、准备文件

1.1、准备本地文件

1.2、把文件上传到HDFS 

2、启动Spark Shell 

2.1、启动HDFS服务

2.2、启动Spark服务

2.3、启动Spark Shell 

 四、掌握转换算子

1、映射算子 - map() 

1.1、映射算子功能

1.2、映射算子案例 

2、过滤算子 - filter()

2.1、过滤算子功能

2.2、过滤算子案例

3、扁平映射算子 - flatMap()

3.1、功能

3.2、扁平映射算子案例 

4、按键归约算子 - reduceByKey()

4.1、功能 

4.2、按键归约算子案例

 5、合并算子 - union()

5.1、功能

5.2、合并算子案例 

 6、排序算子 - sortBy()

6.1、功能

6.2、排序算子案例 

7、按键排序算子 - sortByKey()

7.1、功能

7.2、按键排序算子案例 

8、连接算子

8.1、内连接算子 - join() 

8.2、左外连接算子 - leftOuterJoin() 

8.3、右外连接算子 - rightOuterJoin()

8. 4、全外连接算子 - fullOuterJoin()

9、交集算子 - intersection()

9.1、功能

9. 2、交集算子案例

10、去重算子 - distinct()

10.1、功能 

10.2、案例 

11、组合分组算子 - cogroup()

11.1、功能

11.2、组合分组算子案例

五、掌握行动算子 

 1、归约算子 - reduce()

1.1、功能

1.2、案例 

2、采集算子 - collect()

2.1、功能

2.2、案例 

3、首元素算子 - first() 

3.1、功能

3.2、案例 

4、计数算子 - count() 

4.1、功能

4.2、案例

5、按键计数算子 - countByKey()

5.1、功能 

5.2、案例 

6、前截取算子 - take(n) 

6.1、功能

6.2、案例 

7、排序前截取算子 - takeOrdered(n)[(ordering)]

7.1、功能

7.2、案例 

8、遍历算子 - foreach() 

8.1、功能

 8.2、案例

9、存文件算子 - saveAsFile() 

9.1、功能

9.2、案例 

 

 


一、RDD的处理过程

  • Spark用Scala语言实现了RDD的API,程序开发者可以通过调用API对RDD进行操作处理。RDD经过一系列的“转换”操作,每一次转换都会产生不同的RDD,以供给下一次“转换”操作使用,直到最后一个RDD经过“行动”操作才会被真正计算处理,并输出到外部数据源中,若是中间的数据结果需要复用,则可以进行缓存处理,将数据缓存到内存中。

 二、RDD算子

  • RDD被创建后是只读的,不允许修改。Spark提供了丰富的用于操作RDD的方法,这些方法被称为算子。一个创建完成的RDD只支持两种算子:转换(Transformation)算子和行动(Action)算子。

1、转换算子 

  • RDD处理过程中的“转换”操作主要用于根据已有RDD创建新的RDD,每一次通过Transformation算子计算后都会返回一个新RDD,供给下一个转换算子使用。
  • 常用转换算子操作的API
转换算子 相关说明
filter(func) 筛选出满足函数func的元素,并返回一个新的数据集
map(func) 将每个元素传递到函数func中,返回的结果是一个新的数据集
flatMap(func) 与map()相似,但是每个输入的元素都可以映射到0或者多个输出结果
groupByKey() 应用于(Key,Value)键值对的数据集时,返回一个新的(Key,Iterable <Value>)形式的数据集
reduceByKey(func) 应用于(Key,Value)键值对的数据集时,返回一个新的(Key,Value)形式的数据集。其中,每个Value值是将每个Key键传递到函数func中进行聚合后的结果

 2、行动算子

  • 行动算子主要是将在数据集上运行计算后的数值返回到驱动程序,从而触发真正的计算。
  • 常用行动算子操作的API
行动算子 相关说明
count() 返回数据集中的元素个数
first() 返回数组的第一个元素
take(n) 以数组的形式返回数组集中的前n个元素
reduce(func) 通过函数func(输入两个参数并返回一个值)聚合数据集中的元素
collect() 以数组的形式返回数据集中的所有元素
foreach(func) 将数据集中的每个元素传递到函数func中运行

三、准备工作

1、准备文件

1.1、准备本地文件

  • /home目录里创建words.txt

1.2、把文件上传到HDFS 

  • words.txt上传到HDFS系统的/park目录里

  • 查看文件内容

2、启动Spark Shell 

2.1、启动HDFS服务

  • 执行命令:start-dfs.sh

2.2、启动Spark服务

  • 执行命令:start-all.sh 

2.3、启动Spark Shell 

  • 执行名命令: spark-shell --master spark://master:7077

  • 以集群模式启动的Spark Shell,不能访问本地文件,只能访问HDFS文件,加不加hdfs://192.168.219.75:9000前缀都是一样的效果。

 四、掌握转换算子

  • 转换算子负责对RDD中的数据进行计算并转换为新的RDD。Spark中的所有转换算子都是惰性的,因为它们不会立即计算结果,而只是记住对某个RDD的具体操作过程,直到遇到行动算子才会与行动算子一起执行。

1、映射算子 - map() 

1.1、映射算子功能

  • map()是一种转换算子,它接收一个函数作为参数,并把这个函数应用于RDD的每个元素,最后将函数的返回结果作为结果RDD中对应元素的值。

1.2、映射算子案例 

  • 执行命令:val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5, 6))

  •  将rdd1每个元素翻倍得到rdd2
  • rdd1应用map()算子,将rdd1中的每个元素平方并返回一个名为rdd2的新RDD

  • 上述代码中,向算子map()传入了一个函数x = > x * 2。其中,x为函数的参数名称,也可以使用其他字符,例如a => a * 2。Spark会将RDD中的每个元素传入该函数的参数中。

  • 其实,利用神奇占位符_可以写得更简洁

  • rdd1rdd2中实际上没有任何数据,因为parallelize()map()都为转化算子,调用转化算子不会立即计算结果。

  • 若需要查看计算结果,则可使用行动算子collect()。(collect是采集或收集之意)

  • 执行rdd2.collect进行计算,并将结果以数组的形式收集到当前Driver。因为RDD的元素为分布式的,数据可能分布在不同的节点上。

  • 将rdd1每个元素平方得到rdd2
  • 方法一、采用普通函数作为参数传给map()算子

  • 方法二、采用下划线表达式作为参数传给map()算子

  • 转化成整数

  • 利用映射算子打印菱形 
  • Spark Shell里实现
  • 菱形正立的等腰三角形和倒立的等腰三角形组合而成
  • 右半菱形

  • 加上前导空格,左半菱形

 

  • 前导空格折半,显示菱形

  • 在IDEA里创建项目实现
import org.apache.spark.{SparkConf, SparkContext}
import scala.collection.mutable.ListBuffer
import scala.io.StdIn

object Example01 {
  def main(args: Array[String]): Unit = {
    // 创建Spark配置对象
    val conf = new SparkConf()
      .setAppName("PrintDiamond") // 设置应用名称
      .setMaster("local[*]") // 设置主节点位置(本地调试)
    // 基于Spark配置对象创建Spark容器
    val sc = new SparkContext(conf)
    // 输入一个奇数
    print("输入一个奇数:")
    val n = StdIn.readInt()
    // 创建一个可变列表
    val list = new ListBuffer[Int]()
    // 给列表赋值
    (1 to n by 2).foreach(list.append(_))
    (n - 2 to 1 by -2).foreach(list.append(_))
    // 基于列表创建rdd
    val rdd = sc.makeRDD(list)
    // 对rdd进行映射操作
    val rdd1 = rdd.map(i => " " * ((n - i) /2 ) + "*" * i)
    // 输出rdd1结果
    rdd1.collect.foreach(println)
  }

}

 

  • 如果用户输入一个偶数,会出现什么情况?

  • 修改一下代码,避免这个问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值