【算法修炼道路】连续整数求和

本文探讨了如何解决寻找连续整数之和等于给定正整数 N 的问题。通过分析等差数列求和公式,提出初始解法会因计算大数乘法导致超范围。随后引入优化思路,通过不断从 N 中减去连续整数并判断余数,避免了乘法运算,有效地解决了问题。
摘要由CSDN通过智能技术生成

829. 连续整数求和

给定一个正整数 N,试求有多少组连续正整数满足所有数字之和为 N?

示例 1:

输入: 5
输出: 2
解释: 5 = 5 = 2 + 3,共有两组连续整数([5],[2,3])求和后为 5。
示例 2:

输入: 9
输出: 3
解释: 9 = 9 = 4 + 5 = 2 + 3 + 4
示例 3:

输入: 15
输出: 4
解释: 15 = 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5
说明: 1 <= N <= 10 ^ 9

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/consecutive-numbers-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。


一开始我的思路是这样的,既然是连续的数字的和,那么就可以用等差数列公式来求和。

假设输入数字15

i=1,表示1个连续数字,即15=15

i=2,表示2个连续数字,即15=7+8,7 * 2 + 1

i=3,表示3个连续数字,即15=4+5+6, 4 * 3 +

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值