给定一个正整数 N,试求有多少组连续正整数满足所有数字之和为 N?
示例 1:
输入: 5
输出: 2
解释: 5 = 5 = 2 + 3,共有两组连续整数([5],[2,3])求和后为 5。
示例 2:
输入: 9
输出: 3
解释: 9 = 9 = 4 + 5 = 2 + 3 + 4
示例 3:
输入: 15
输出: 4
解释: 15 = 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5
说明: 1 <= N <= 10 ^ 9
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/consecutive-numbers-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
一开始我的思路是这样的,既然是连续的数字的和,那么就可以用等差数列公式来求和。
假设输入数字15
i=1,表示1个连续数字,即15=15
i=2,表示2个连续数字,即15=7+8,7 * 2 + 1
i=3,表示3个连续数字,即15=4+5+6, 4 * 3 +