题目描述
题解
题目让求
v∗m2
别有用心啊
令
ai
表示每天走的路程和,
si
表示前i段路程的前缀和
ans=m2∗1m[∑i=1m(ai−snm)2]
=m(∑i=1ma2i+s2nm−2sn∑i=1maim)
=m∑i=1mai2−sn2
所以实际上就是将n个数划分成m个部分然后让这些部分的平方和尽量小
令
f(i,j)
表示前j个数划分成i个部分的答案
那么
f(i,j)=min{f(i−1,k)+(sj−sk)2},1≤k<j
那么i那一维不管,剩余展开
f(i,j)=min{−2sksj+f(i−1,k)+s2k+s2j}
这样就可以斜率优化了
代码
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define LL long long
const int max_n=3e3+5;
const LL INF=1e18;
int n,m,head,tail;
int a[max_n],s[max_n],q[max_n];
LL f[max_n],g[max_n];
LL xba,ans;
inline LL K(int k){return -2*s[k];}
inline LL B(int k){return g[k]+s[k]*s[k];}
inline LL Y(int j,int k){return K(k)*s[j]+B(k);}
inline bool cmp(int x1,int x2,int x3){
LL w1=(K(x1)-K(x3))*(B(x2)-B(x1));
LL w2=(K(x1)-K(x2))*(B(x3)-B(x1));
return w1>=w2;
}
int main(){
scanf("%d%d",&n,&m); ans=INF;
for (int i=1;i<=n;++i) scanf("%d",&a[i]),s[i]=s[i-1]+a[i];
for (int i=1;i<=n;++i) g[i]=INF;g[0]=0;
for (int i=1;i<=m;++i){
head=tail=0;
for (int j=0;j<=n;++j){
while (head<tail&&Y(j,q[head])>=Y(j,q[head+1])) head++;
f[j]=Y(j,q[head])+s[j]*s[j];
while (head<tail&&cmp(j,q[tail-1],q[tail])) tail--;
q[++tail]=j;
}
ans=min(ans,f[n]);
for (int j=0;j<=n;++j) g[j]=f[j];
}
printf("%lld\n",(LL)ans*m-(LL)s[n]*s[n]);
}
总结
时刻要注意斜率单调这一性质。