[BZOJ3832][Poi2014]Rally(拓扑序+线段树)

70 篇文章 0 订阅
3 篇文章 0 订阅

题目描述

传送门

题解

考场上只会打枚举删点的暴力,学长讲题了 之后感觉很厉害呀。

设f[i],g[i]分别表示到点i的最长路径和从点i开始的最长路径.通过两遍拓扑排序就可以求出这两个数组.
对于一条边(u,v)它可以产生的最长路径就是f[u]+e[i].v+g[v];
我们用权值线段树维护当前所有合法边产生的最长路径的最大值.考试的时候一直在往枚举的方向考虑,没有想到动态维护直接查询可以用到权值线段树.
首先把g[i]数组加入线段树.
按拓扑序依次枚举每一个点x.
把指向它的边产生的最长路径和g[x]从线段树中删除.
当前全局最大值就是删掉这个点的最长路径.
然后把这个点连出去的边产生的最长路径和f[x]加入线段树
时间复杂度O(nlog(n))

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;

const int N=5e5+5;
const int M=1e6+5;
const int INF=2e9;

int n,m,cnt,Max,ans=INF,ansp;
int tot,point[N],v[M],nxt[M];
int tot1,point1[N],v1[M],nxt1[M];
int f[N],g[N],topo[N],du[N];
bool vis[N];
struct hp{int x,y;}edge[M];
struct hq{int pt,step;};
int sum[(N+1)*4];
queue <hq> q;

inline void addedge(int x,int y)
{
    ++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y;
}
inline void add(int x,int y)
{
    ++tot1; nxt1[tot1]=point1[x]; point1[x]=tot1; v1[tot1]=y;
}
inline void Topo(int *a)
{
    for (int i=1;i<=n;++i)
        if (!du[i])
        {
            q.push((hq){i,0});
            vis[i]=true;
        }
    while (!q.empty())
    {
        hq now=q.front(); q.pop();
        topo[++cnt]=now.pt;
        a[now.pt]=now.step;
        for (int i=point[now.pt];i;i=nxt[i])
            if (!vis[v[i]])
            {
                du[v[i]]--;
                if (!du[v[i]])
                {
                    vis[v[i]]=true;
                    q.push((hq){v[i],now.step+1});
                }
            }
    }
}

inline void update(int now)
{
    sum[now]=sum[now<<1]+sum[now<<1|1];
}
inline void point_change(int now,int l,int r,int x,int v)
{
    int mid=(l+r)>>1;
    if (l==r)
    {
        sum[now]+=v;
        return;
    }
    if (x<=mid) point_change(now<<1,l,mid,x,v);
    else point_change(now<<1|1,mid+1,r,x,v);
    update(now);
}
inline int query(int now,int l,int r)
{
    int mid=(l+r)>>1;
    if (l==r) return l;
    if (sum[now<<1|1]) return query(now<<1|1,mid+1,r);
    else if (sum[now<<1]) return query(now<<1,l,mid);
    else return 0;
}

int main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=m;++i)
    {
        scanf("%d%d",&edge[i].x,&edge[i].y);
        addedge(edge[i].y,edge[i].x);
        du[edge[i].x]++;
    }
    Topo(g);

    tot=0; memset(point,0,sizeof(point)); memset(nxt,0,sizeof(nxt)); memset(v,0,sizeof(v));
    memset(du,0,sizeof(du)); memset(vis,0,sizeof(vis)); cnt=0;
    for (int i=1;i<=m;++i)
    {
        addedge(edge[i].x,edge[i].y);
        add(edge[i].y,edge[i].x);
        du[edge[i].y]++;
    }
    Topo(f);
    for (int i=1;i<=n;++i) point_change(1,1,n,1+g[i],1);

    for (int i=1;i<=n;++i)
    {
        int now=topo[i];
        for (int i=point1[now];i;i=nxt1[i])
            point_change(1,1,n,1+g[now]+f[v1[i]]+1,-1);
        point_change(1,1,n,1+g[now],-1);
        Max=query(1,1,n)-1;
        if (Max<ans)
        {
            ans=Max;
            ansp=now;
        }
        for (int i=point[now];i;i=nxt[i])
            point_change(1,1,n,1+f[now]+g[v[i]]+1,1);
        point_change(1,1,n,1+f[now],1);
    }
    printf("%d %d\n",ansp,ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值