[POJ3301]Texas Trip(三分法+计算几何)

55 篇文章 0 订阅
4 篇文章 0 订阅

题目描述

传送门

题解

假设正方形的边都与坐标轴平行可以求出来一个正方形
如果这个正方形旋转一个角度的话正方形的大小可能会改变
发现正方形的面积关于旋转角度的函数单峰
[0,π2] 三分角度
为了方便将正方形转等效成点转,即正方形的边永远与坐标轴平行,每次只统计极值即可

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
#define N 100

const double inf=1e18;
const double pi=acos(-1.0);
const double eps=1e-12;
int dcmp(double x)
{
    if (x<=eps&&x>=-eps) return 0;
    return (x>0)?1:-1;
}
int T,n;
double x[N],y[N],ans;

double calc(double rad)
{
    double X,Y,maxx=-inf,minx=inf,maxy=-inf,miny=inf,Max=-inf;
    for (int i=1;i<=n;++i)
    {
        X=x[i]*cos(rad)-y[i]*sin(rad),Y=x[i]*sin(rad)+y[i]*cos(rad);
        maxx=max(maxx,X);maxy=max(maxy,Y);
        minx=min(minx,X);miny=min(miny,Y);
    }
    Max=max(maxx-minx,maxy-miny);
    return Max*Max;
}
double find()
{
    double l=0,r=pi/2.0,mid1,mid2,ans1,ans2,ans;
    while (dcmp(r-l)>0)
    {
        mid1=l+(r-l)/3.0;
        mid2=r-(r-l)/3.0;
        ans1=calc(mid1);
        ans2=calc(mid2);
        if (dcmp(ans1-ans2)<=0) ans=ans1,r=mid2;
        else l=mid1;
    }
    return ans;
}
int main()
{
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d",&n);
        for (int i=1;i<=n;++i) scanf("%lf%lf",&x[i],&y[i]);
        ans=find();
        printf("%.2lf\n",ans);
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值