题目描述
题解
这道题有每一个点经过且只经过一次的限制以为是有上下界的费用流
然后写写写…对是对了,T得好惨
因为加了
n2
条边…
实际上这道题一个普通的费用流就能解决了
对于每一个点拆点xiyi
s->xi,1,0
s->yi,1,ai
yi->t,1,0
对于能到达的两个点ij,xi->yj,time
这样跑一遍费用流就可以了
可以发现是一定可以满流的,保证了每一个点都被访问一次,有点最小路径覆盖的意思
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std;
#define N 80000
#define inf 2000000000
int n,m,x,y,z,s,t,mincost;
int tot,point[N],nxt[N],v[N],remain[N],c[N];
int d[N],dis[N],last[N];
bool vis[N];
queue <int> q;
void addedge(int x,int y,int cap,int z)
{
++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y; remain[tot]=cap; c[tot]=z;
++tot; nxt[tot]=point[y]; point[y]=tot; v[tot]=x; remain[tot]=0; c[tot]=-z;
}
int addflow(int s,int t)
{
int now=t,ans=inf;
while (now!=s)
{
ans=min(ans,remain[last[now]]);
now=v[last[now]^1];
}
now=t;
while (now!=s)
{
remain[last[now]]-=ans;
remain[last[now]^1]+=ans;
now=v[last[now]^1];
}
return ans;
}
bool spfa(int s,int t)
{
memset(dis,127,sizeof(dis));dis[s]=0;
memset(vis,0,sizeof(vis));vis[s]=1;
while (!q.empty()) q.pop();q.push(s);
while (!q.empty())
{
int now=q.front();q.pop();
vis[now]=0;
for (int i=point[now];i!=-1;i=nxt[i])
if (dis[v[i]]>dis[now]+c[i]&&remain[i])
{
dis[v[i]]=dis[now]+c[i];
last[v[i]]=i;
if (!vis[v[i]]) vis[v[i]]=1,q.push(v[i]);
}
}
if (dis[t]>inf) return 0;
int flow=addflow(s,t);
mincost+=flow*dis[t];
return 1;
}
int main()
{
tot=-1;memset(point,-1,sizeof(point));
scanf("%d%d",&n,&m);
s=n+n+1,t=s+1;
for (int i=1;i<=n;++i)
{
scanf("%d",&x);
addedge(s,n+i,1,x);
addedge(s,i,1,0);
addedge(n+i,t,1,0);
}
for (int i=1;i<=m;++i)
{
scanf("%d%d%d",&x,&y,&z);
if (x==y) continue;
if (x>y) swap(x,y);
addedge(x,n+y,inf,z);
}
while (spfa(s,t));
printf("%d\n",mincost);
}