题目描述
题解
题意就是给出n,k,m,p,求有多少长度为k的序列A,满足:首项为正整数;递增数列;相邻两项的差小于等于m;最大值小于等于n
设a(i)=A(i+1)-A(i),我们只考虑a(i),显然a(i)所需要满足的条件就是
ai≤m
一个合法的a(i)序列对答案的贡献为
n−∑i=1k−1ai
合法的a(i)序列一共有
mk−1
个,那么
ans=∑a1=1m∑a2=1m...∑ak−1=1m(n−a1−a2−...−ak−1)
=n∗mk−1−∑a1=1m∑a2=1m...∑ak−1=1m∑i=1k−1ai
从这里可以看出,后面的一坨实际上就是1..m这些数每个数出现了
(k−1)∗mk−2
次,求它们的和
所以用一下等差数列的求和公式?
ans=n∗mk−1−m(m+1)2∗(k−1)∗mk−2
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
#define LL long long
LL n,m,k,Mod,ans;
LL fast_pow(LL a,LL p)
{
LL ans=1;
for (;p;p>>=1,a=a*a%Mod)
if (p&1)
ans=ans*a%Mod;
return ans;
}
void exgcd(LL a,LL b,LL &x,LL &y)
{
if (!b) x=1LL,y=0LL;
else exgcd(b,a%b,y,x),y-=a/b*x;
}
LL inv(LL a,LL b)
{
LL x=0LL,y=0LL;
exgcd(a,b,x,y);
x=(x%b+b)%b;
return x;
}
int main()
{
scanf("%lld%lld%lld%lld",&n,&k,&m,&Mod);
if (k==1) {printf("%lld\n",n);return 0;}
ans=n%Mod*fast_pow(m%Mod,k-1)%Mod-m*(m+1)%Mod*inv(2,Mod)%Mod*fast_pow(m%Mod,k-2)%Mod*(k-1)%Mod;
ans=(ans%Mod+Mod)%Mod;
printf("%lld\n",ans);
}