题目描述
题解
首先容斥一下
答案=至少0个不满足限制的-至少一个不满足性质的+至少2个不满足性质的…
2t
枚举然后计算每一个的答案
假设我们现在要在n种物品中选出m个,相当于是将m个小球放在n个盒子里,允许为空
那么组合数就是
Cn−1n+m−1
但是这道题是“至多”m个,那么应该求的是
Cn−1n−1+Cn−1n+Cn−1n+1+...+Cn−1n+m−1
这个式子可以利用
Cji=Cji−1+Cj−1i−1
化简一下,在前面添加一个
Cnn−1
,然后相邻两项合并
最终就是
Cnn+m
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
#define N 100005
#define LL long long
int n,t,m,Mod;
int b[N];
LL mul[N],inv[N],ans;
void init()
{
mul[0]=1;
for (int i=1;i<=Mod;++i) mul[i]=mul[i-1]*(LL)i%Mod;
inv[1]=1;
for (int i=2;i<=Mod;++i) inv[i]=inv[Mod%i]*(Mod-Mod/i)%Mod;
inv[0]=1;
for (int i=1;i<=Mod;++i) inv[i]=inv[i]*inv[i-1]%Mod;
}
LL C(int n,int m)
{
if (m>n) return 0;
return mul[n]*inv[n-m]%Mod*inv[m]%Mod;
}
LL lucas(int n,int m)
{
if (m>n) return 0;
LL ans=1LL;
for (;m;n/=Mod,m/=Mod)
ans=ans*C(n%Mod,m%Mod)%Mod;
return ans;
}
LL calc(int state)
{
int now=m;
for (int i=0;i<t;++i)
if ((state>>i)&1) now-=b[i+1]+1;
if (now<0) return 0;
return lucas(n+now,n);
}
int main()
{
scanf("%d%d%d%d",&n,&t,&m,&Mod);
init();
for (int i=1;i<=t;++i) scanf("%d",&b[i]);
for (int i=0;i<1<<t;++i)
{
int opt=0;
for (int j=0;j<t;++j)
if ((i>>j)&1) ++opt;
if (opt&1) ans-=calc(i);
else ans+=calc(i);
ans%=Mod;
}
ans=(ans+Mod)%Mod;
printf("%lld\n",ans);
}