题目描述
题目大意:给出一个n个数的数列,从中选出m个数,要求选的每一段连续的区间中第一个数都没有贡献,求最大值。
题解
f(i,j,0/1/2,0/1/2)表示选了i个数,选到第j个数,第j个数不选/选了不算贡献/选了算贡献,第一个数不选/选了不算贡献/选了算贡献的最大值
目标状态只有f(m,n,0,2)是不合法的
加一个滚动数组优化
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
#define N 4000
int n,m,ans;
int a[N],f[2][N][3][3];
int Max(int a,int b,int c)
{
if (a<b) a=b;
if (a<c) a=c;
return a;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;++i) scanf("%d",&a[i]);
memset(f,128,sizeof(f));
for (int i=1;i<=n;++i) f[0][i][0][0]=0;
for (int i=1;i<=m;++i)
{
memset(f[i&1],128,sizeof(f[i&1]));
for (int j=i;j<=n;++j)
{
if (i==1&&j==1)
{
f[i&1][j][0][0]=0;
f[i&1][j][1][1]=0;
f[i&1][j][2][2]=a[1];
continue;
}
for (int k=0;k<=2;++k)
{
f[i&1][j][0][k]=Max(f[i&1][j-1][0][k],f[i&1][j-1][1][k],f[i&1][j-1][2][k]);
f[i&1][j][1][k]=max(f[(i-1)&1][j-1][0][k],f[(i-1)&1][j-1][1][k]);
f[i&1][j][2][k]=max(f[(i-1)&1][j-1][1][k],f[(i-1)&1][j-1][2][k])+a[j];
}
}
}
for (int i=0;i<=2;++i)
for (int j=0;j<=2;++j)
{
if (i==0&&j==2) continue;
ans=max(ans,f[m&1][n][i][j]);
}
printf("%d\n",ans);
}