基本思想
通过Dijkstra计算图G中的最短路径时,需要指定起点vs(即从顶点vs开始计算)。
此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点,而U则是记录还未求出最短路径的顶点(以及该顶点到起点vs的距离)。
初始时,S中只有起点vs;U中是除vs之外的顶点,并且U中顶点的路径是"起点vs到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 ... 重复该操作,直到遍历完所有顶点。
操作步骤
(1) 初始时,S只包含起点vs;U包含除vs外的其他顶点,且U中顶点的距离为"起点vs到该顶点的距离"[例如,U中顶点v的距离为(vs,v)的长度,然后vs和v不相邻,则v的距离为∞]。
(2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。
(3) 更新U中各个顶点到起点vs的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(vs,v)的距离可能大于(vs,k)+(k,v)的距离。
(4) 重复步骤(2)和(3),直到遍历完所有顶点。
代码示例图:
图一:
图二: