关键路径算法 Java实现

如果要对一个流程图活的最短时间,就必须分析他们的拓扑关系,并且找到当中最关键的流程,

这个流程的时间就是最短时间

AOE网(Activity On Edge Network):
 * 在一个表示工程的带权有向图中,用顶点表示事件,用有向边表示活动,用边上的权值表示活动的持续时间。
 * 注:与AOV网不同的是,AOV网是顶点表示活动的网,它值描述活动之间的制约关系,而AOE网是用边表示活动的网,边上的权值表示活动持续的时间。


结合 图1中的v3,v4理解事件的最早发生时间,v1理解事件的最晚发生时间比较好。


代码中的图

图1:


图1中事件的最早和最晚发生时间



图2:


图2中事件的最早和最晚发生时间



代码:

import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

/**
 * AOE网(Activity On Edge Network):<p>
 * 在一个表示工程的带权有向图中,用顶点表示事件,用有向边表示活动,用边上的权值表示活动的持续时间。<p>
 * 注:与AOV网不同的是,AOV网是顶点表示活动的网,它值描述活动之间的制约关系,而AOE网是
 * 用边表示活动的网,边上的权值表示活动持续的时间。
 */
public class CriticalPath {
    
    /**
     * 顶点数组
     */
    private List<VertexNode> vexList;
    
    /**
     * etv:earliest time of vertex 事件的最早发生时间<p>
     * ltv:latest time of vertex 事件的最晚发生时间 
     */
    private int etv[], ltv[];
    
    /**
     * 拓扑序列,保存各顶点拓扑排序的顺序
     */
    private Stack<Integer> stack2;
    
    /**
     * 创建图1(邻接表)
     */
    public void createGraph1() {
        //v0
        VertexNode v0 = new VertexNode(0, 0, null);
        
        EdgeNode v0e0 = new EdgeNode(3, 3, null);
        v0.setFirstEdge(v0e0);
        
        //v1
        VertexNode v1 = new VertexNode(0, 1, null);
        
        EdgeNode v1e0 = new EdgeNode(3, 1, null);
        EdgeNode v1e1 = new EdgeNode(4, 2, null);
        
        v1.setFirstEdge(v1e0);
        v1e0.setNext(v1e1);
        
        //v2
        VertexNode v2 = new VertexNode(0, 2, null);
        
        EdgeNode v2e0 = new EdgeNode(4, 3, null);
        v2.setFirstEdge(v2e0);
        
        //v3
        VertexNode v3 = new VertexNode(2, 3, null);
        
        EdgeNode v3e0 = new EdgeNode(5, 1, null);
        v3.setFirstEdge(v3e0);
        
        //v4
        VertexNode v4 = new VertexNode(2, 4, null);
        
        EdgeNode v4e0 = new EdgeNode(5, 1, null);
        v4.setFirstEdge(v4e0);
        
        //v5
        VertexNode v5 = new VertexNode(2, 5, null);
        
        
        vexList = new ArrayList<>();
        vexList.add(v0);
        vexList.add(v1);
        vexList.add(v2);
        vexList.add(v3);
        vexList.add(v4);
        vexList.add(v5);
    }
    
    
    /**
     * 创建图2(邻接表)
     */
    public void createGraph2() {
        //v0
        VertexNode v0 = new VertexNode(0, 0, null);
        
        EdgeNode v0e0 = new EdgeNode(2, 4, null);
        EdgeNode v0e1 = new EdgeNode(1, 3, null);
        
        v0.setFirstEdge(v0e0);
        v0e0.setNext(v0e1);
        
        //v1
        VertexNode v1 = new VertexNode(1, 1, null);
        
        EdgeNode v1e0 = new EdgeNode(4, 6, null);
        EdgeNode v1e1 = new EdgeNode(3, 5, null);
        
        v1.setFirstEdge(v1e0);
        v1e0.setNext(v1e1);
        
        //v2
        VertexNode v2 = new VertexNode(1, 2, null);
        
        EdgeNode v2e0 = new EdgeNode(5, 7, null);
        EdgeNode v2e1 = new EdgeNode(3, 8, null);
        
        v2.setFirstEdge(v2e0);
        v2e0.setNext(v2e1);
        
        //v3
        VertexNode v3 = new VertexNode(2, 3, null);
        
        EdgeNode v3e0 = new EdgeNode(4, 3, null);
        
        v3.setFirstEdge(v3e0);
        
        //v4
        VertexNode v4 = new VertexNode(2, 4, null);
        
        EdgeNode v4e0 = new EdgeNode(7, 4, null);
        EdgeNode v4e1 = new EdgeNode(6, 9, null);
        
        v4.setFirstEdge(v4e0);
        v4e0.setNext(v4e1);
        
        //v5
        VertexNode v5 = new VertexNode(1, 5, null);
        
        EdgeNode v5e0 = new EdgeNode(7, 6, null);
        
        v5.setFirstEdge(v5e0);
        
        //v6
        VertexNode v6 = new VertexNode(1, 6, null);
        
        EdgeNode v6e0 = new EdgeNode(9, 2, null);
        
        v6.setFirstEdge(v6e0);
        
        //v7
        VertexNode v7 = new VertexNode(2, 7, null);
        
        EdgeNode v7e0 = new EdgeNode(8, 5, null);
        
        v7.setFirstEdge(v7e0);
        
        //v8
        VertexNode v8 = new VertexNode(1, 8, null);
        
        EdgeNode v8e0 = new EdgeNode(9, 3, null);
        
        v8.setFirstEdge(v8e0);
        
        //v9
        VertexNode v9 = new VertexNode(2, 9, null);
        
        
        vexList = new ArrayList<>();
        vexList.add(v0);
        vexList.add(v1);
        vexList.add(v2);
        vexList.add(v3);
        vexList.add(v4);
        vexList.add(v5);
        vexList.add(v6);
        vexList.add(v7);
        vexList.add(v8);
        vexList.add(v9);
    }
    
    
    
    /**
     * 拓扑排序 用于关键路径计算<p>
     *
     * 新加了一些代码
     */
    public boolean topologicalSort() {
        //统计输出顶点数
        int count = 0;
        
        //建栈存储入度为0的顶点
        Stack<Integer> stack = new Stack<>();
        
        //统计入度数
        for (int i = 0;i < vexList.size(); i++) {
            vexList.get(i).setIn(0);
        }
        for (int i = 0;i < vexList.size(); i++) {
            
            EdgeNode edge = vexList.get(i).getFirstEdge();
            while (edge != null) {
                VertexNode vex = vexList.get(edge.getAdjvex());
                vex.setIn(vex.getIn() + 1);
                
                edge = edge.getNext();
            }
        }
        
        //将入度为0 的顶点入栈
        for (int i = 0;i < vexList.size(); i++) {
            if (vexList.get(i).getIn() == 0) {
                stack.push(i);
            }
        }
        
        //----新加begin---- 初始化
        etv = new int[vexList.size()];
        stack2 = new Stack<>();
        //----新加end----
        
        System.out.print("拓扑序列:");
        while (!stack.isEmpty()) {
            //栈顶 顶点出栈
            int vexIndex = stack.pop();
            System.out.print(vexIndex + "  ");
            
            count++;
            
            //----新加 。将弹出的顶点序号压入拓扑序列的栈
            stack2.push(vexIndex);
            
            EdgeNode edge = null;
            //----循环方式变了一下
            for (edge = vexList.get(vexIndex).getFirstEdge(); edge != null; edge = edge.getNext()){
            
                int adjvex = edge.getAdjvex();
                
                VertexNode vex = vexList.get(adjvex);
                
                //将此 顶点的入度减一
                vex.setIn(vex.getIn() - 1);
                //此顶点的入度为零则入栈,以便于下次循环输出
                if (vex.getIn() == 0) {
                    stack.push(adjvex);
                }
                
                //----新加 求各顶点的最早发生时间值。
                if (etv[vexIndex] + edge.getWeight() > etv[adjvex]) {
                    etv[adjvex] = etv[vexIndex] + edge.getWeight(); 
                }
            }
        }
        
        if (count != vexList.size())
            return false;
        else
            return true;
    }
    
    /**
     * 关键路径
     */
    public void criticalPath() {
        //求拓扑序列,计算数组etv和stack2的值
        boolean success = topologicalSort();
        if (!success) {
            System.out.println("\n有回路");
            return;
        }
        
        //声明活动最早发生时间和最迟发生时间
        int ete, lte;

        //初始化ltv
        ltv = new int[vexList.size()];
        for (int i = 0; i <vexList.size(); i++)
            ltv[i] = etv[vexList.size() - 1];
        
        System.out.print("\n关键路径:\n");
        //求顶点的最晚发生时间
        while (!stack2.isEmpty()) {
            //将拓扑序列出栈
            int vexIndex = stack2.pop();
            
            EdgeNode edge = null;
            for (edge = vexList.get(vexIndex).getFirstEdge(); 
                    edge != null; edge = edge.getNext()) {
                int adjvex = edge.getAdjvex();
                
                //求各顶点最晚发生时间
                //已知最早发生时间,才能求最晚发生时间,顺序不能倒过来
                //最晚完成时间要按拓扑序列逆推出来
                //个人理解:求最晚和最早原理相同,只不过是返回来
                if (ltv[adjvex] - edge.getWeight() < ltv[vexIndex]) {
                    ltv[vexIndex] = ltv[adjvex] - edge.getWeight();
                }
            }
        }
        
        for (int i = 0; i < vexList.size(); i++) {
            EdgeNode edge = null;
            for (edge = vexList.get(i).getFirstEdge(); edge != null; edge = edge.getNext()) {
                int adjvex = edge.getAdjvex();
                
                //活动最早发生时间,即为边的弧头的最早发生时间
                ete = etv[i];
                //活动最晚发生时间,即为弧尾的的最晚发生时间减去权值
                lte = ltv[adjvex] - edge.getWeight();
                //相等即为关键路径
                if (ete == lte) {
                    System.out.printf("<v%d,v%d>: %d\n",
                            vexList.get(i).getData(), vexList.get(adjvex).getData(), edge.getWeight());
                }
            }
        }
    }
    
    public static void main(String[] args) {
        CriticalPath criticalPath = new CriticalPath();
        criticalPath.createGraph1();
        //criticalPath.createGraph2();
        criticalPath.criticalPath();
    }

}


/**
 * 边表结点
 *
 */
class EdgeNode {
    /**
     * 邻接点域,存储该顶点对应的下标
     */
    private int adjvex;
    
    /**
     * 用于存储权值,对于非网图可以不需要
     */
    private int weight;
    
    /**
     * 链域,指向下一个邻接点
     */
    private EdgeNode next;
    
    

    public EdgeNode(int adjvex, int weight, EdgeNode next) {
        super();
        this.adjvex = adjvex;
        this.weight = weight;
        this.next = next;
    }

    public int getAdjvex() {
        return adjvex;
    }

    public void setAdjvex(int adjvex) {
        this.adjvex = adjvex;
    }

    public int getWeight() {
        return weight;
    }

    public void setWeight(int weight) {
        this.weight = weight;
    }

    public EdgeNode getNext() {
        return next;
    }

    public void setNext(EdgeNode next) {
        this.next = next;
    }
    
    
}

/**
 * 顶点表结点
 *
 */
class VertexNode {
    /**
     * 顶点入度
     */
    private int in;
    
    /**
     * 顶点域,存储顶点信息(下标)
     */
    private int data;
    
    /**
     * 边表头指针
     */
    private EdgeNode firstEdge;
    
    

    public VertexNode(int in, int data, EdgeNode firstEdge) {
        super();
        this.in = in;
        this.data = data;
        this.firstEdge = firstEdge;
    }

    public int getIn() {
        return in;
    }

    public void setIn(int in) {
        this.in = in;
    }

    public int getData() {
        return data;
    }

    public void setData(int data) {
        this.data = data;
    }

    public EdgeNode getFirstEdge() {
        return firstEdge;
    }

    public void setFirstEdge(EdgeNode firstEdge) {
        this.firstEdge = firstEdge;
    }
    
    
}

结果:

图1:


图2:



评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值