poj - 1976 A Mini Locomotive

该博客介绍了POJ-1976问题,涉及如何使用动态规划解决一列火车车厢中接人的最大人数问题。通过维护决策集合的状态,将原本的时间复杂度从O()优化到O(n),提高算法效率。文中引用了《算法竞赛进阶指南》中的观点,并提供了简化复杂度的代码实现。
摘要由CSDN通过智能技术生成

题目链接:https://vjudge.net/problem/POJ-1976

题意:有n节车厢,每节车厢有ai个人,你有三辆车,每辆车可以接连续m节车厢的人,问你可以接的最大人数是多少。

思路:动态规划,用dp[i][j]表示第i辆车在第j节车厢开始接人所能接的最大人数,状态转移方程为

dp[i][j] = max(dp[i-1][x]) + pre[j+m-1]-pre[i-1], x\in(1,j-m);

如果直接用一个for循环去寻找满足条件的最大值的话,时间复杂度将为O(n^{2}),显然不是我们可以接受的,但是注意到对于j从小到大增加,第三层循环中的元素只会增多不会减少,因此,我们可以在第二层循环中求出满足条件的最大值,将复杂度降为O(n)。

对于“决策集合中的元素只增多不减少”的情景,就可以像本题一样维护一个变量来记录决策集合的当前信息,避免重复扫描,把转移的复杂度降低一个量级。--《算法竞赛进阶指南》p265

代码:

#include <iostream>
#include <cstring>

using namespace std;

int a[50050], pre[50050], dp[4][50050];

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0), cout.tie(0);
	int T, n, m, MAX;
	cin>>T;
	while(T--){
		memset(dp, 0, sizeof dp);
		cin>>n;
		for(int i = 1; i <= n; ++i){
			cin>>a[i];
			pre[i] = pre[i-1] + a[i];
		}
		cin>>m;
		if(n <= 3*m){
			cout<<pre[n]<<'\n';
			continue;
		}
		for(int f = 1; f <= 3; ++f){
			if(f >= 2)
				MAX = dp[f-1][(f-2)*m+1];
			else
				MAX = 0;
			for(int i = (f-1)*m+1; i <= n-(4-f)*m+1; ++i){
				if(i >= m)
					MAX = max(MAX, dp[f-1][i-m]);
				dp[f][i] = MAX + pre[i+m-1]-pre[i-1];
			}
		}
		MAX = 0;
		for(int i = 2*m+1; i <= n-m+1; ++i)
			MAX = max(MAX, dp[3][i]);
		cout<<MAX<<'\n';
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值