题目链接:https://vjudge.net/problem/POJ-1976
题意:有n节车厢,每节车厢有ai个人,你有三辆车,每辆车可以接连续m节车厢的人,问你可以接的最大人数是多少。
思路:动态规划,用dp[i][j]表示第i辆车在第j节车厢开始接人所能接的最大人数,状态转移方程为
dp[i][j] = max(dp[i-1][x]) + pre[j+m-1]-pre[i-1], x(1,j-m);
如果直接用一个for循环去寻找满足条件的最大值的话,时间复杂度将为O(),显然不是我们可以接受的,但是注意到对于j从小到大增加,第三层循环中的元素只会增多不会减少,因此,我们可以在第二层循环中求出满足条件的最大值,将复杂度降为O(n)。
对于“决策集合中的元素只增多不减少”的情景,就可以像本题一样维护一个变量来记录决策集合的当前信息,避免重复扫描,把转移的复杂度降低一个量级。--《算法竞赛进阶指南》p265
代码:
#include <iostream>
#include <cstring>
using namespace std;
int a[50050], pre[50050], dp[4][50050];
int main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int T, n, m, MAX;
cin>>T;
while(T--){
memset(dp, 0, sizeof dp);
cin>>n;
for(int i = 1; i <= n; ++i){
cin>>a[i];
pre[i] = pre[i-1] + a[i];
}
cin>>m;
if(n <= 3*m){
cout<<pre[n]<<'\n';
continue;
}
for(int f = 1; f <= 3; ++f){
if(f >= 2)
MAX = dp[f-1][(f-2)*m+1];
else
MAX = 0;
for(int i = (f-1)*m+1; i <= n-(4-f)*m+1; ++i){
if(i >= m)
MAX = max(MAX, dp[f-1][i-m]);
dp[f][i] = MAX + pre[i+m-1]-pre[i-1];
}
}
MAX = 0;
for(int i = 2*m+1; i <= n-m+1; ++i)
MAX = max(MAX, dp[3][i]);
cout<<MAX<<'\n';
}
return 0;
}