时间与空间复杂度及线性表

时间与空间复杂度及线性表

:本文适合刚接触数据结构的小白。
一。时间复杂度
1.概念:对于我们日常写一个算法,对代码运行所消耗的时间的计算。
2.常见的几个时间复杂度:
常见的时间复杂度有O(1) ,O(logn) , O(n) , O(n2),O(2n)

其所消耗的时间大小顺序为O(1) < O(logn) < O(n) < O(n^2) < O(2^n)
这里博主附图一张对各个式子做解释:注意时间复杂度只取对于表达式中的最高次幂,除了最高次幂,其他的都可以省略掉在这里插入图片描述
二.空间复杂度
1.概念:算法的空间复杂度通过计算算法所需的存储空间来实现。
2.计算公式:**S(n)=o( f(n) ) .**其中,n为问题的规模,f (n)为语句关于n所占存储空间的函数。
三.小总结
通常,我们用“时间复杂度”来指运行时间的需求,用“空间复杂度”来指空间的需求。
四.线性表
1.概念:由零个或多个数据元素组成的有限序列。
2.特征:若元素存在多个,则第一个元素无前驱,最后一个元素无后继,其他的元素都有且只有一个前驱和后继(类似于排队,注意:一对多的关系不符合线性表,例:老师于学生就不符合)。
3.线性表元素的个数n(n>=0)定义为线性表的长度,当n=0时,称为空表。
五。线性表的基本操作
1.基本操作:

  • InitList(*L): 初始化操作,建立一个空的线性表L.

  • ListEmpty(L):判断线性表是否为空表,若为空表,则返回true,否则返回false. ClearList(*L): 将线性表清空

  • GetE1em(L,i,*e): 将线性表L中的第i个位置元素返回给e

  • LocateE1em(L,e):在线性表L中查找与给定值e相等的元素,如果查找成功,返回该元素在表中序号表示成功,否则,返回0表示失败。

  • Listlnsert(*L,i,e): 在 线 性 丧 L 中 第 i 个 位 置 插 入 新元素e。

  • ListDeIete(*L,i,*e) : 删 余 线 性 表 L 中 第 i 个 置 元 素 ,并 用 e 返 回 其 值 。

  • ListLength(L): 返 回 线 性 丧 L 的 元 素 个 数 。

注意:上述的插入/删除第i个元素,其实实际上是指插入/删除到第i-1个位置。(你可以想像为数组,从o开始)。
2.插入与删除的例题:
在这里博主附上例题,希望你们能更好的理解。

  • 插入
    -在这里插入图片描述
  • 删除
    在这里插入图片描述
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值