作为当下最先进的深度学习架构之一,Transformer 被广泛应用于自然语言处理领域。它不单替代了以前流行的循环神经网络(recurrent neural network,RNN)和长短期记忆(long short-term memory,LSTM)网络,并且以它为基础衍生出了诸如 BERT、GPT-3、T5 等知名架构。
这里给大家推荐一本《BERT基础教程:Transformer大模型实战》书籍,帮助大家来学习BERT和Transformer架构。
有需要这本
《BERT基础教程:Transformer大模型实战》
书籍PDF文档,可以微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费】
这本书聚焦谷歌公司开发的 BERT 自然语言处理模型,由浅入深地介绍了 BERT 的工作原理、BERT 的各种变体及其应用。
书中大量的示意图、代码和实例,详细解析了如何训练 BERT 模型、如何使用 BERT 模型执行自然语言推理任务、文本摘要任务、问答任务、命名实体识别任务等各种下游任务,以及如何将 BERT 模型应用于多种语言。
书籍内容框架
有需要这本
《BERT基础教程:Transformer大模型实战》
书籍PDF文档,可以微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费】