MoE 模型在推理时显存的具体消耗是如何计算的?
本文将重点介绍以下几个方面:
1、不同模型精度对显存占用的影响
2、DeepSeek 推理的资源消耗构成
3、计算资源的评估方法 (MoE与非MoE存在差异)
4、结合典型业务场景的计算示例
希望通过本文,能够帮助大家在部署 DeepSeek 时,合理预估显存消耗,并根据实际业务需求选择合适的硬件配置。文末提供 Excel 表格工具实现自动化显存计算,方便读者使用。
一、推理场景资源评估方法
模型精度对模型显存消耗有直接影响
在介绍显存消耗之前,先简单介绍一下模型精度是什么?
在大模型中,参数通常以不同精度的格式存储,常见的有 FP32、FP16、BF16 和 INT8,它们的主要区别在于参数存储的精度不同。
-
FP32(单精度浮点数):每个参数占用 32 位(4 字节)。
-
FP16、BF16(半精度浮点数):每个参数占用 16 位(2 字节),但它们的小数点表示方式有所不同。
-
INT8(8 位整数):每个参数占用 8 位(1 字节),存储需求最小,但可能会损失部分精度。
不同精度格式的显存占用计算方式如下:
-
INT8:显存占用 = 1 × 参数量(Byte)
-
FP16、BF16:显存占用 = 2 × 参数量(Byte)
-
FP32:显存占用 = 4 × 参数量(Byte)
由于 1GB ≈ 10⁹ 字节,可以用此方法粗估算模型的显存需求。例如,LLaMA 13B(130 亿参数)模型采用 BF16 存储时,显存占用约为 2 × 13B = 26GB,因此至少需要 26GB 的 GPU 显存才能运行。
精度和存储空间需要平衡
参数位数越小,存储需求越少,但因为位数少,能表达的信息丰富度也会少,可能会损失一定的计算精度。例如:
-
INT8(8 位整数):可以表示 256(282^828) 个不同的数值
-
FP16(半精度浮点数):采用 1 位符号位 + 5 位指数位 + 10 位尾数位,可表示约 6.55 × 10⁴个不同的数值
-
BF16(Brain Floating Point 16):采用 1 位符号位 + 8 位指数位 + 7 位尾数位,能表示的数值范围更大
-
FP32(单精度浮点数):采用 1 位符号位 + 8 位指数位 + 23 位尾数位,提供更高的计算精度,但占用的存储空间也更大
在大模型训练和推理中,FP16 和 BF16 常用于降低显存占用,同时保持较高的计算精度,而 INT8 主要用于极限优化推理效率的量化模型。FP32 精度最高,但存储开销也最大,因此主要用于训练而非推理。
DeepSeek模型推理显存消耗如何计算?
计算 DeepSeek V3 推理所需的显存资源需要考虑多个因素,包括模型参数量、精度、输入数据尺寸、批处理大小以及中间计算结果等,显存消耗计算本身比较复杂,大模型在推理时显存消耗主要由下面四部分组成:模型权重占用、KV Cache(Key-Value 缓存)、激活值(Activation)与中间计算存储、并发。 我们来看下各自分别是什么:
1、模型权重占用(Weights)
-
大模型的参数(权重)存储在显存中,需要占用显存,以便计算时快速访问,注意大模型在推理时需要先将模型参数完整的加载到显存中,少一个字节都不行。
-
DeepSeek-V3 采用 MoE(混合专家)架构,虽然总参数量高达 671B,但每个 token 仅激活部分专家( 8 个),激活参数量为 37B,所以实际加载的参数远小于全量模型,只需要计算激活的参数量即可。
-
消耗显存主要取决于数据类型(FP16、FP8、INT4 等),数据精度越高,占用显存越多。
计算公式:模型参数显存(GB)=激活参数量×精度(字节数)/10^9
举例:如果使用 FP16(2B/参数),一个 37B(370 亿参数)规模的 MoE 模型在推理时大约需要 74GB 显存。如果采用 INT8 量化,显存占用可降至 37GB。
2、KV Cache(Key-Value 缓存)
在 Transformer 模型中,每个输入 token 都会通过线性变换生成三个向量:Query(Q)、Key(K)和 Value(V)。在自回归生成任务中,模型每次生成一个新 token 时,需要考虑之前所有生成的 token。如果不使用 KV Cache,每次生成新 token 时都需要重新计算之前所有 token 的 K 和 V,这会导致计算量大幅增加。 【关于Q、K、V如何计算可以看文末过往文章】
KV Cache 的机制是将之前计算好的 K 和 V 缓存起来,在生成新 token 时直接从缓存中读取,而不是重新计算。这样可以显著减少计算量,总结起来
-
KV Cache 主要存储 历史 token 的注意力信息,用于加速自注意力(Self-Attention)计算,避免重复计算。
-
Transformer 结构计算注意力时,需要访问所有之前的 token,存储 Key 和 Value 以便后续计算。
-
消耗显存取决于上下文长度和并发用户数,上下文越长、并发用户越多,KV Cache 需求越大。
但是 MoE 跟传统 Transformer 模型有差异,MoE 层和非 MoE 层对显存占用不一样,DeepSeek 模型输入数据通过一个路由机制被分配到不同的专家(Expert)进行处理每个专家只处理部分输入数据,而不是整个输入序列。这种稀疏激活机制显著减少了计算量和显存占用
-
激活专家数量:每个输入 token 激活的专家数量。DeepSeek V3模型中每个 token 可能激活 8 个专家
-
压缩维度:为了进一步减少显存占用,MoE 架构通常会对专家的输出进行压缩。压缩维度是指压缩后的特征向量的维度,DeepSeek V3专家模型输入维度是7168,输出会进行压缩至 512 。可以简单理解为原来需要保存7168份信息,现在只需要512份,显存占用减少了。降维后的信息仍然足够表达核心特征,但显存占用只有原来的14分之一(注意不是整体,只是局部),使得推理更加高效。
所以 MoE 层和非 MoE 层的 kv cache 计算公式不一样
对于非 MoE 层, KV Cache 的计算公式为:
KV Cache=2(表示 Key 和 Value 两个矩阵)×Batch Size×Sequence Length×Hidden Size×精度(字节数) × 层数
对于 MoE 层,KV Cache 的计算公式为:
KV Cache =2×Batch Size×Sequence Length×激活专家数量×压缩维度×精度(字节数)× 层数
3、激活值(Activation)与中间计算存储
-
激活值存储 Transformer 计算过程中中间结果,用于反向传播(训练时)或前向计算(推理时)。
-
主要包括 Self-Attention 计算中间变量、前馈网络(FFN)计算结果等。
-
消耗显存取决于 batch size、隐藏层大小(Hidden Size)和层数。
非 MoE 层的计算方式与传统 Transformer 一致,激活值显存计算公式:激活内存=Batch Size×Sequence Length×Hidden Size×层数×精度(字节数)
该部分的计算逻辑与标准 Transformer 结构相同,所有 token 在该层都会经过计算,因此激活值存储需求较大。
MoE 结构中的专家(Experts)不会全部被激活,每个 token 只会被分配到 部分专家 进行计算,因此 MoE 层的激活值存储计算方式与传统 Transformer 不同。
MoE 层的激活值计算公式为:
激活值显存=Batch Size×Sequence Length×激活专家数量×压缩维度×层数×精度(字节数)
4、计算并发需求
大模型在推理时通常需要同时服务多个用户
模型权重是静态的,并且可以被多个推理任务共享存储模型权重(Weights)——这是固定的,不随并发数增长。
KV Cache(Key-Value 缓存)——不同的请求会有不同的 KV Cache。
激活值(Activations)——每个请求都有自己的计算状态,因此会随并发数增长。
所以显存占用计算方式:对于 N 并发用户,显存消耗可以近似表示为:
总显存=模型权重+(KV Cache+激活值)×N
二、知识库场景 DeepSeek 推理资源消耗计算
企业知识库主要用于员工查询公司政策、技术文档、产品手册等,帮助快速获取所需信息,提高工作效率。例如:
-
人力资源部门 查询公司考勤制度、休假规定;
-
技术支持团队 检索某款软件的 API 文档、排错指南;
-
销售人员 查阅产品参数、竞品对比资料;
并发用户预估:在企业内部搭建知识库,一般来说,并发用户数大约占总用户数的 1% - 5%。例如,在一个有 1000 名员工使用的企业知识库中,通常同时并发查询的用户可能在 10 - 50 人之间。
输出序列预估:由于这些查询涉及的内容较复杂,AI 需要提供较详细的回答,因此每次问答可能会生成 2000 个 token,相当于 1500-2000 个汉字(包括标点符号),相当于一篇简短的技术解答或政策说明。
接下来我们基于以下模型信息,结合上述分析的计算方法,计算显存资源消耗:
DeepSeek V3 模型信息:
-
激活参数量=37B
-
神经网络总共 61 层,其中 58 层是 MoE 层,3 层是非 MoE 层
-
Batch Size = 1
-
Sequence Length (token 数) = 2048
-
Hidden Size= 7168
-
激活专家数量= 8
-
压缩维度= 512
-
精度= FP16(2 字节)
10个用户并发时,总共显存消耗(计算方法已经写到Excel表中) :
三、总结
DeepSeek 采用 MoE 架构,相较于传统 Transformer,在推理阶段大幅降低了显存需求。显存消耗主要受 模型参数量、KV Cache、激活值存储 以及 并发 影响,同时不同精度格式(如 FP16、INT8)也会影响显存占用。由于 MoE 模型包含 MoE 层与非 MoE 层,两者的 KV Cache 和激活值计算方式有所不同,导致计算相对复杂。
为方便大家使用,笔者整理了一份 Excel 计算表,并附上常见 NVIDIA GPU 参数供参考。读者可以根据自己业务需求选择DeepSeek模型参数、并发用户数和序列长度,然后自动计算所需的显存,然后在NVIDIA GPU表格中选择合适的GPU卡。
计算显存Excel工具
四、如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】