你是否也曾好奇,那些能自主执行任务、调用工具的 AI “agent” 是如何运作的? 2024 年,我们见证了 AI 技术从简单的聊天机器人向更复杂的智能体转变。但当我们深入研究这些 agent 时,会发现它们背后的技术栈与我们熟悉的 LLM 技术栈截然不同。
今天,我们就来揭开 AI agent 技术的神秘面纱,为你梳理这个快速发展的领域,让你不再雾里看花。
一、从 LLM 到 Agent:一场深刻的进化
在 2022 和 2023 年,我们见证了 LLM 框架和 SDK 的爆发,如 LangChain 和 LlamaIndex。与此同时,LLM 的使用也变得更加方便,无论是通过 API 调用还是自行部署(比如 vLLM 和 Ollama)。
然而,到了 2024 年,大家的目光开始转向更高级的 AI “agent”。这个概念虽然早在 AI 领域就存在,但在 ChatGPT 时代,它有了新的内涵:能够自主行动、执行任务,并与外部工具交互的 LLM。
这种转变意味着,我们需要一套全新的技术栈来支撑 agent 的发展。
Agent 技术栈:核心差异在哪里?
Agent 不仅仅是一个会聊天的大模型,它们更像是具备一定自主性的智能体。它们需要管理自己的状态(例如,对话历史和记忆)、调用各种工具,并且安全执行。这使得 agent 的技术栈和传统的 LLM 技术栈有很大的不同。
让我们从底层到顶层,逐一剖析 agent 技术栈的关键组成部分:
1. 模型服务:AI 的大脑
- 核心: LLM。这是 AI agent 的核心动力。
- 服务方式: 通过推理引擎提供服务,通常是付费/自己部署 API。
- 主要玩家:
闭源模型: OpenAI 和 Anthropic 领跑。
开源模型: Together.AI、Fireworks 和 Groq 等提供商开始崭露头角,提供基于 Llama 3 等模型的服务。
本地部署: vLLM 成为生产级 GPU 服务的主流选择,而 Ollama 和 LM Studio 则深受个人爱好者的喜爱。
2. 存储:记忆的基石
-
核心: 持久化状态,如对话历史、记忆和外部数据。
-
关键技术:
向量数据库: Chroma、Weaviate、Pinecone、Qdrant 和 Milvus 等用于存储 agent 的“外部记忆”,应对大容量数据。
传统数据库: Postgres 通过 pgvector 扩展也开始支持向量搜索。 -
为何重要? Agent 是有状态的,需要长期存储和检索信息。
3. 工具与库:能力的扩展
-
核心: 使 agent 能够执行各种任务的“工具”(或“函数”)。
-
调用方式: 通过 LLM 生成的结构化输出(例如,JSON 对象)指定要调用的函数和参数。
-
安全执行: 使用沙箱(如 Modal 和 E2B)来确保工具执行的安全性。
-
工具生态:
通用工具库: Composio 等。
专用工具: Browserbase(网页浏览)、Exa(网页搜索)等。 -
为何重要? 工具扩展了 agent 的能力边界,让它们能够完成更复杂的任务。
4. Agent 框架:编排智能的指挥中心
-
核心: 负责编排 LLM 调用,管理 agent 状态。
-
关键特性:
状态管理: 如何保存和加载 agent 状态,例如对话历史和记忆。
上下文窗口: 如何将状态信息“编译”到 LLM 的上下文窗口中。
跨 agent 通信: 如何实现多 agent 之间的协作。
内存管理: 如何应对 LLM 有限的上下文窗口,管理长期记忆。
开源模型支持: 如何让 agent 更好地利用开源模型。 -
热门框架: Llama Index、CrewAI、AutoGen、Letta、LangGraph 等。
-
为何重要? 框架决定了 agent 的运行方式和效率。
5. Agent 托管与服务:未来趋势
-
核心: 将 agent 作为服务进行部署,通过 API 进行访问。
-
当前痛点: 状态管理、安全工具执行以及规模化部署是难题。
-
未来展望: 未来将会出现标准化的 Agents API,让 agent 的部署更加便捷。
-
为何重要? 这将使 agent 从原型走向真正的应用。
未来已来:agent 技术栈正在高速发展
Agent 技术栈整体仍然非常年轻,但它正在以惊人的速度发展。未来的 agent 将会更加智能、更加自主,它们将会在各行各业发挥重要的作用。
二、如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】