MCP从入门到精通(八)使用Upsonic 构建MCP智能体

十四、使用Upsonic 构建MCP智能体

Upsonic是一个用于创建AI智能体的Python框架。使用Upsonic,您可以构建您的代理,定义代理的任务,并使用MCP工具处理每个任务定义,正如下面的示例代码所演示的那样。

import os
from dotenv import load_dotenv
from upsonic import Task, Agent, Direct
from upsonic.client.tools import Search  # Adding Search as a fallback tool

# Load environment variables from .env file
load_dotenv()

# Get the OpenAI API key from environment variables
openai_api_key = os.getenv("OPENAI_API_KEY")
ifnot openai_api_key:
raise ValueError("OPENAI_API_KEY not found in .env file")

# Set your OpenAI API key for the session
os.environ["OPENAI_API_KEY"] = openai_api_key

# Define the HackerNews MCP tool
# Using the correct MCP setup for HackerNews based on Upsonic documentation
classHackerNewsMCP:
    command = "uvx"
    args = ["mcp-hn"]
# No environment variables are needed for this MCP

# Create a task to analyze the latest HackerNews stories
# Adding Search as a fallback in case HackerNews MCP fails
task = Task(
"Analyze the top 5 HackerNews stories for today. Provide a brief summary of each story, "
"identify any common themes or trends, and highlight which stories might be most relevant "
"for someone interested in AI and software development.",
    tools=[HackerNewsMCP, Search]  # Include both HackerNews MCP and Search tools
)

# Create an agent specialized in tech news analysis
agent = Agent(
"Tech News Analyst",
    company_url="https://news.ycombinator.com/",
    company_objective="To provide insightful analysis of tech industry news and trends"
)

# Execute the task with the agent and print the results
print("Analyzing HackerNews stories...")
agent.print_do(task)

# Alternatively, you can use a Direct LLM call if the task is straightforward
# print("Direct analysis of HackerNews stories...")
# Direct.print_do(task)

# If you want to access the response programmatically:
# agent.do(task)
# result = task.response
# print(result)

在上述示例中,我们在Upsonic中创建了一个AI智能体,用于获取Hackernews中最新的五条新闻。如果你执行pip install upsonic并运行上面的Python代码,你应该会看到类似于此图片的输出。

img

十五、总结

本教程向大家介绍了MCP,并解释了为什么它在开发者社区中变得如此流行。除了上述内容,我们还在六种不同的Python和TypeScript框架中实现了MCP,用于构建基于大语言模型(LLM)的应用、AI助手和智能体。然而,MCP的强大之处也伴随着一些挑战。当你为你的项目寻找MCP工具时,可能会发现难以评估或验证其质量,也难以确定其在你的AI项目中的具体应用。这是因为其工具的搜索和发现机制尚未标准化。此外,由于不同的MCP服务器提供商使用不同的架构,其配置也无法提供一致的用户体验。目前,MCP生态系统正在讨论标准化其各个方面。未来,可能会有一种标准化的方式来安装基于MCP的应用,就像我们用pip安装Python包一样。


如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值