十一、REVEAL:推理+视觉
REVEAL是一种针对视觉语言任务的RAG方法——想想GPT-4V。它将推理、任务对齐思维和现实世界根基相结合,以减少视觉查询中的幻觉。
核心特点
- 基于现实世界的视觉事实。
- 决策过程透明且可解释。
- 少样本友好。
应用场景
- 用于机械系统的视觉故障排除机器人,通过手册和日志“查看”机器部件并建议修复。
实践项目
制造业视觉合规检查器
构建一个能够将产品设计或包装图像与监管和品牌合规性检查表进行审计的人工智能助手。它提取视觉特征(例如,警告标签、布局、标志放置),检索有关相关标准(例如FDA或ISO)的文档,然后标记问题或推荐修复。该项目需要在视觉和文本证据之间进行推理。该代理必须分析图像,并将其发现与检索到的监管指南对齐,这是REVEAL的强项。
基于图表学习的教育导师
创建一个智能导师,帮助学生理解生物学、物理学或地理学中的视觉概念。当展示图表(例如,水循环或电路板)时,它检索相关的教科书内容,逐步解释视觉内容,并回答后续问题。从图表中学习需要系统能够解释视觉元素,并将其与解释性文本联系起来。REVEAL使这种视觉-文本融合成为可能,以支持丰富的教育对话。
十二、REACT:先思考,再行动
REACT(推理+行动)为模型提供了一种带有可操作步骤的思考链方法,非常适合解决问题。它使代理能够通过推理逐步处理查询,然后通过调用搜索API、计算器、数据库或代码执行环境等工具来“行动”。REACT的独特之处在于检索并非被动的——它变成了一个主动的、由决策驱动的过程,代理决定何时检索、检索什么以及如何在上下文中使用它。
核心特点
- 保持过去步骤的记忆。
- 通过逻辑推理行动。
- 增强透明度和可靠性。
应用场景
- 通过生成假设、检查文档和逐步修改代码来调试的编码副驾驶。
实践项目
自主商业团队数据分析员
构建一个帮助商业分析师回答数据问题(例如,“为什么第三季度在欧洲、中东和非洲地区的收入下降了?”)的人工智能代理。它通过推理查询,从仪表板中拉取相关指标,检索会议记录或客户关系管理条目,运行计算,并以结构化的方式呈现带有视觉解释的回答。该代理需要在推理(“我需要欧洲、中东和非洲地区的收入趋势”)和行动(“查询销售数据库”)之间交替,使其成为REACT思考-行动循环的完美契合。
法律研究和起草助手
创建一个帮助律师起草论点或分析案例的法律人工智能。它可以检索相关的法规或先前的判决,通过先例进行推理,突出矛盾,并生成法律简报的大纲或初稿。法律任务往往需要代理根据不断演变的上下文采取智能行动——搜索数据库、解释条款以及构建逻辑论点。REACT的迭代决策循环支持这种复杂性。
十三、记忆型RAG:构建记忆,击败延迟
记忆型RAG旨在提高速度和效率。它随着时间的推移构建一个检索记忆缓存,记住以前查询中有用的文档。与其每次都重新查询整个语料库,系统会记住有用的先前检索,并重新使用高置信度的块,以节省时间并提高响应一致性。这使得代理能够在用户反复互动或上下文跨轮次延续时,以更低的延迟和更好的会话连续性运行。
核心特点
- 记忆先前的检索。
- 降低延迟和计算成本。
- 非常适合重复或类似的问题。
应用场景
- 客户服务机器人使用以前访问过的数据回答重复的账单或政策相关问题。
实践项目
持续学习人工智能教练
构建一个帮助用户掌握复杂学科(如人工智能、法律或医学)的个人学习助手。该助手记住以前会话中检索到的解释、关键概念以及误解的话题,并利用这些上下文为未来的回答或测验学习者提供个性化服务。由于学习之旅是逐步的,该代理受益于重新使用早期的见解,而不是从头开始检索一切。这使得互动更快,并且更符合每个用户的学习路径。
忙碌领导的执行简报助手
创建一个为高管总结正在进行的计划、过去的决策以及新更新的智能简报工具。当被问及“泰坦计划的状态如何?”时,它利用以前的总结和检索回忆即时回答。高管重视速度和一致性。记忆型RAG使系统能够回忆以前会话中的上下文丰富的块,确保更快的响应并减少重复。
十四、图形RAG:连接点
大多数RAG系统检索线性文本块。图形RAG通过连接实体和概念构建知识图谱,使模型能够在结构化的关系上进行推理。
核心特点
- 知识的结构化表示。
- 支持在复杂关系上进行推理。
- 增强可解释性。
应用场景
- 通过概念图在法规、案例法和条例之间导航的法律人工智能助手。
十五、双模RAG:两种优势的结合
双模RAG结合了两个生成器或检索器,以提高输出质量。这些可以是不同的模型,也可以是使用不同提示或检索基础的相同模型。
核心特点
- 模型多样性减少幻觉。
- 增强鲁棒性。
- 鼓励输出之间达成一致。
应用场景
- 比较并交叉验证使用两个不同医学知识库的建议的医疗聊天机器人。
十六、上下文感知型RAG:个性化且持久
这种RAG变体记住你的上下文——过去的对话、用户行为和偏好——并据此调整其检索。
核心特点
- 对话记忆。
- 基于用户历史的检索。
- 个性化回答。
应用场景
- 根据学习者过去的问题和错误调整解释的人工智能导师。
十七、集成型RAG:让专家来决定
为什么只选择一个模型,而你可以使用集成呢?集成型RAG将任务路由到多个RAG管道,选择或组合最佳输出。
核心特点
- 结合不同RAG模型的优势。
- 基于投票或排名的答案选择。
- 鲁棒的回退机制。
应用场景
- 需要在速度、成本和精度之间取得平衡的企业人工智能系统,通过在快速和彻底的管道之间切换。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】