洛谷P4159 [SCOI2009] 迷路(拆点+矩阵快速幂)

题目

该有向图有 n(n<=10) 个节点,节点从 1 至 n 编号,windy 从节点 1 出发,他必须恰好在 t(t<=1e9) 时刻到达节点 n。

现在给出该有向图,你能告诉 windy 总共有多少种不同的路径吗?

答案对 2009 取模。

注意:windy 不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。

有向图用邻接矩阵的形式给出,a[i][j]只为0-9之间的字符

思路来源

https://www.luogu.com.cn/problemnew/solution/P4159

题解

如果a[i][j]=0/1,这题就是矩阵快速幂的sb题,然而现在0-9,记w为a[i][j]的值

怎么办,拆点,把原来一个点拆成9个点,i点对应新矩阵的9*i到9*i+8,像链表一样,前到后的距离为1

只有点号为9*i的点是真实的点,拆点之后的路径,仍然只能有一条路径从原9*i指向9*j,且距离为w

若w为0跳过,否则由9*i+(w-1)向9*j连一条边,代表i的第w-1个点到j的第0个点的距离为1

这样i到j的距离为w,且没有新的边,然后矩阵快速幂就可以了

代码

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
const int MOD = 2009;
const int MAXN = 102;
const int N = 13;

struct mat {
    ll c[MAXN][MAXN];
    int m, n;
    mat(){
    	memset(c, 0, sizeof(c));
    	m=n=MAXN;
    }
    mat(int a, int b) : m(a), n(b) {
        memset(c, 0, sizeof(c));
    }
    void clear(){
		memset(c, 0, sizeof(c));
    }
    mat operator * (const mat& temp) {
        mat ans(m, temp.n);
        for (int i = 0; i < m; i ++)
            for (int j = 0; j < temp.n; j ++)
            {
                for (int k = 0; k < n; k ++)
                    ans.c[i][j] += c[i][k] * temp.c[k][j];//能不取模 尽量不取模
                //这里maxn=2 故不会超过ll 视具体情况 改变取模情况
                ans.c[i][j]%=MOD;
            }
        return ans;
    }
    friend mat operator ^(mat M, ll n) //幂次一般为ll
	{
   		 mat ans(M.m, M.m);
    	for (int i = 0; i < M.m; i ++)
        ans.c[i][i] = 1;
   		 while (n > 0) {
        if (n & 1) ans = ans * M;
        M = M * M;
        n >>= 1;
    	}
    return ans;
	}
};
int n,m,t;
char s[N];
int main(){
    scanf("%d%d",&n,&t);
    mat a(9*n,9*n);
    for(int i=0;i<n;++i){
        for(int j=0;j<8;++j){//0-8
            a.c[9*i+j][9*i+j+1]=1;
        }
        scanf("%s",s);
        int v;
        for(int j=0;j<n;++j){
            v=s[j]-'0';
            if(!v)continue;
            a.c[9*i+v-1][9*j]=1;
        }
    }
    a=a^(a,t);
    printf("%lld\n",a.c[0][9*(n-1)]);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值