Uva11077 Find the Permutations(置换循环性质/递推)

题目

给定n和k(n<=21,0<k<n),求有多少长为n的排列,

至少需要交换k次,才能变成{1,...,n}

思路来源

指南P149

题解

长度为x的置换循环需要x-1交换,

类似第一类斯特林数,设f[i][j]为考虑1到i的置换时至少需要j次交换的方案数

则加入第i个数时,要么加入之前的置换循环,需要1次交换,要么新开一个,不需要交换

注意答案需要ull

代码

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef unsigned long long ull;
const int N=22;
int n,k;
ull f[N][N];//f[i][j]表示需要至少j次 才能交换成1到i的排列
int main(){
    f[1][0]=1;//1
    for(int i=2;i<=21;++i){
        for(int j=0;j<i;++j){
            //考虑到长为x的置换循环所需x-1次才能归位
            f[i][j]=(i-1)*(j-1>=0?f[i-1][j-1]:0)+f[i-1][j];//考虑将第i个元素放入之前的置换循环 还是单开一个置换循环
        }
    }
    while(~scanf("%d%d",&n,&k)){
        if(!n && !k)break;
        printf("%llu\n",f[n][k]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值