Codeforces Round 868 (Div. 2) F. Random Walk(树上期望)

这篇文章讨论了一种在n个点的树结构中,从起点s开始,等概率选择边随机游走,直到到达终点t停止的情况下,每个点被经过的期望次数问题。解决方案分为三部分:1)s到t的链;2)s到t链上其他点的子树;3)t的子树。通过动态规划和深度优先搜索算法,计算每个点的期望次数。
摘要由CSDN通过智能技术生成

题目

n(n<=2e5)个点的树,

从起点s出发,每次等概率选择一条边,随机游走到相邻点

若走到t,则停止,问每个点经过的期望次数,答案对998244353取模

思路来源

DLUT_Zeratul讲解

题解

需要分成三部分考虑,

①s->t这条链,将这条链上的边定向,经过的次数,正向边=反向边+1

②对于s->t链上的点u(u可以等于s,u不可以等于t),将u和s->t链之间的边断开后,u的子树内的点

对于子树内的点,正向边=反向边

③将t与s->t链之间的边断开后,t的子树内的点

由于走到t即停止,所以这部分子树点的期望次数等于0

举个例子,以n=6,s=3,t=5这棵树为例

①部分,为点3、点4、点5,即3->4->5这条链

②部分,为点2、点1

③部分,为点6

记dp[i]为点i经过的期望次数,

记一条有向边(u,v)走的期望次数为cnt(u,v)

根据期望定义,有

1. 当i!=t时,一条边i->x走的次数cnt(i,x)\frac{dp[i]}{d[i]},其中d[i]为点i的度

2. 当i=t时,一条边i->x走的次数cnt(i,x)为0,因为走到t后,就会立刻停止

然后就可以转移了

1. dp[t]=1,终点只会被经过一次

2. 先求①,根据cnt(u,v)=cnt(v,u)+1,其中u->v为正向边,v->u为反向边

即,\frac{dp[u]}{d[u]}=(v==t?0:\frac{dp[v]}{d[v]})+1,求得dp[u]

3. 再求②,根据cnt(u,v)=cnt(v,u)

即,\frac{dp[u]}{d[u]}=\frac{dp[v]}{d[v]},求得dp[u]

4. ③部分的值均为0,就无需再求了

代码

#include<iostream>
#include<vector>
using namespace std;
const int N=2e5+10,mod=998244353;
int n,s,t,u,v;
int dp[N]; // dp[i]:i点经过次数的期望
vector<int>e[N];
bool vis[N],has[N];
int modpow(int x,int n,int mod){
    int res=1;
    for(;n;n>>=1,x=1ll*x*x%mod){
        if(n&1)res=1ll*res*x%mod;
    }
    return res;
}
int inv(int x){
    return modpow(x,mod-2,mod);
}
int d(int x){
    return (int)(e[x].size());
}
void dfs(int u){
    vis[u]=1;
    for(auto &v:e[u]){
        if(vis[v])continue;
        dfs(v);
        if(!has[v])continue;
        dp[u]=1ll*((v==t?0:1ll*dp[v]*inv(d(v)))+1)%mod*d(u)%mod;// dp[u]/d[u]=(dp[v]/d[v])+1,其中从t再走出来的可能性是0
        has[u]=1;
    }
    if(u==t){
        dp[u]=1;
        has[u]=1;
    }
}
void dfs2(int u){
    vis[u]=1;
    for(auto &v:e[u]){
        if(vis[v])continue;
        if(has[u] && u!=t && !has[v]){
            dp[v]=1ll*(1ll*dp[u]*inv(d(u))%mod)*d(v)%mod;// dp[u]/d[u]=dp[v]/d[v],其中从t再走出来的可能性是0
            has[v]=1;
        }
        dfs2(v);
    }
}
int main(){
    scanf("%d%d%d",&n,&s,&t);
    for(int i=1;i<n;++i){
        scanf("%d%d",&u,&v);
        e[u].push_back(v);
        e[v].push_back(u);
    }
    dfs(s);
    for(int i=1;i<=n;++i)vis[i]=0;
    dfs2(s);
    for(int i=1;i<=n;++i){
        printf("%d%c",dp[i]," \n"[i==n]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值