Lint Code 丑数

设计一个算法,找出只含素因子2,3,5 的第 n 小的数。 符合条件的数如:1, 2, 3, 4, 5, 6, 8, 9, 10, 12... 我们可以认为 1 也是一个丑数。 您在真实的面试中是否遇到过这个题?是 题目纠错 样例 样例 1: 输入:9 输出:10 样例 2...

2019-07-05 22:23:45

阅读数 12

评论数 0

LintCode 统计数字

计算数字 k 在 0 到 n 中的出现的次数,k 可能是 0~9 的一个值。 样例 样例 1: 输入: k = 1, n = 1 输出: 1 解释: 在 [0, 1] 中,我们发现 1 出现了 1 次 (1)。 样例 2: 输入: k = 1, n = 12 输出: 5 解释: 在...

2019-07-04 10:40:23

阅读数 9

评论数 0

LintCode 尾部的零

设计一个算法,计算出n阶乘中尾部零的个数 样例 样例 1: 输入: 11 输出: 2 样例解释: 11! = 39916800, 结尾的0有2个。 样例 2: 输入: 5 输出: 1 样例解释: 5! = 120, 结尾的0有1个。 这个题很多人都分析出了...

2019-07-04 09:50:56

阅读数 12

评论数 0

使用深度学习进行点云匹配(一)

前言:使用深度学习进行点云匹配研究是我的毕设题目。因为之前只学习过深度学习在2D CV上的一些知识,对于三维点云这种东西根本没有听说过,因此也是感觉头大。好在老师给了我一篇paper,让我先去研究里面的方法,这篇论文是CVPR2017年的一篇口头报告,《3DMatch: Learning Loca...

2019-06-15 10:22:18

阅读数 2746

评论数 18

使用深度学习进行点云匹配(二)

本文承接上一篇《使用深度学习进行点云匹配(一)》。 在上一篇研究了Demo代码如何实现根据3Dmatch描述子实现点云配对以后,接下来的问题就是如何训练出3Dmatch描述子。在此之前,作者先将数据转换为了TDF体素网络,今天便来解析这部分是怎么做的。但是我昨天研究了一天,有一些地方还是没有搞懂...

2019-06-15 10:22:07

阅读数 975

评论数 2

使用深度学习进行点云匹配(三)

接上一篇,接下来我们要研究的是如何训练出点云中3DMatch描述子。这里我们要引入一个深度学习框架:Marvin,正如我们耳详能熟的keras,pytorch,tensorflow等深度学习框架一样,Marvin也是一个深度学习框架,那么它的特征是什么呢?Marvin是普林斯顿大学视觉工作组htt...

2019-06-15 10:21:50

阅读数 643

评论数 0

使用深度学习进行点云匹配(五)

本文承接前一篇:使用深度学习进行点云匹配四,今天要研究的是关于TDF的具体含义和如何训练3D match描述子的方法。之前提到了使用3D match进行迁移学习的代码,但是那个相当于利用已经训练好的权重只进行了一次前向传播,得出512维的描述子后进行匹配,那么这些权重是如何训练出的,这就是今天要探...

2019-06-15 10:21:36

阅读数 395

评论数 1

使用深度学习进行点云匹配(四)

承接上一篇文章《使用深度学习进行点云匹配(三)》。因为之前提到过因为硬件原因我自己无法去训练3Dmatch描述子,因此接下来我的任务是尝试应用这个模型。我更换了原来的点云数据,新数据来自于斯坦福大学的3D扫描数据库,网址为;http://graphics.stanford.edu/data/3Ds...

2019-06-15 10:21:22

阅读数 253

评论数 0

利用深度学习进行点云匹配(六)

本文承接上一篇:利用深度学习进行点云匹配(五)。 之前的文章介绍了3D match如何进行点云匹配,总结来说它使用了Siamese network的设计思想,在Point cloud,Mesh和Depth map三种数据中找出匹配的对应点,围绕对应点取出一个立方块,计算它的TDF,将匹配的体素块...

2019-06-15 10:21:08

阅读数 329

评论数 2

reduce_mem_usage函数,减少数据的内存

最近在做kaggle比赛的时候看到有一个函数reduce_mem_usage,可以对数据进行压缩,从而减少内存消耗,因此记录一下: def reduce_mem_usage(df, verbose=True): numerics = ['int16', 'int32', 'int64'...

2019-03-05 10:21:11

阅读数 196

评论数 0

kaggle房价预测代码一:很好的stacking模版

今天开始做kaggle的房价预测比赛,这是一个回归问题的比赛,我找到了一份非常好的代码。 原文链接:https://www.kaggle.com/serigne/stacked-regressions-top-4-on-leaderboard 说一下在特征处理中的一些操作: 1.删除价格异常...

2018-12-08 22:03:43

阅读数 850

评论数 0

泰坦尼克号比赛预测5:能上0.83的代码

今天找到了一份可以上0.83的代码,真是令人震惊,作者只是用了knn的单模型就做到了这个成绩。其中他构建了一个很新奇的特征:家庭中是否有人存活,我不知道是不是这个意思。最后也没有交叉验证,甚至划分出验证集,只是使用了网格搜索,当然,这并不意味着作者做了很少的工作,实际上在他的Kernels中它提到...

2018-12-08 10:57:51

阅读数 95

评论数 0

泰坦尼克号比赛预测四:使用keras基于深度学习预测

找到了一篇基于深度学习进行泰坦尼克比赛预测的代码。写得非常好,我做了一点点修改,准确了准确率在0.794 代码是基于keras写的,以后再做此类问题时可以模仿着进行迁移。原文链接: https://www.kaggle.com/rafaelvleite/titanic-artificial-n...

2018-12-07 22:13:31

阅读数 365

评论数 0

泰坦尼克号预测三:投票法

今天找到一篇新的关于泰坦尼克号比赛的分析文章,作者号称可以上0.8,但是我竟然跑了0.76,而线下是0.83,过拟合了。不过我觉得这里面的对于网格搜索和voting_classifier类的使用以及一些多变量联系的可视化操作是值得学习的,因此我把代码记录在下面,原文连接:https://www.k...

2018-12-07 16:56:13

阅读数 112

评论数 0

泰坦尼克号比赛分层预测

上一篇最终提交了一下,结果是77。然后那一篇主要在于前面的特征工程,后面的模型部分没有很详细处理,今天找到一篇在模型建立上很好的文章,第一层作者用了5个模型分别进行预测,并且是交叉验证实现,然后作者把第一层的结果作为输出,又利用一个xgb模型作为第二层的训练,特征提取上与第一篇文章没有大的区别,那...

2018-12-06 21:08:51

阅读数 52

评论数 0

泰坦尼克号比赛大神级分析

最近在学习如何打数据挖掘比赛,感觉以前自己根本没有分析的去做比赛,因此我在重温之前的一些比赛,想看一下大神的思路是怎样的,今天这个比赛就是kaggle的入门比赛:泰坦尼克号比赛。虽然是入门的,但是有太多的大神对这份数据提出了自己的见解,今天我看的这份报告是一个完全版的分析,英文版的,我想把它翻译过...

2018-12-05 20:26:27

阅读数 137

评论数 0

pandas 的describe函数的参数详解

基本上pandas的describe函数大家都会使用,我之前也是,直接data.describe(),就把数据的统计信息给打印出来了。但是今天因某些原因研究了一下describe的参数,才知道其实describe还有很多其他的作用。 这是官方文档:http://pandas.pydata.org...

2018-12-04 21:54:59

阅读数 6782

评论数 0

来自大神的kaggle经验之谈

今天看了一篇采访,采访了现今kaggle比赛第一名:Bestfitting。大神的经验之谈对我很有帮助,特地摘取一部分做记录。原文章:http://www.she9.com/article.php?id=166 Q:在参加新比赛时,你首先会怎么做? 在比赛开始的第一个星期内,我会创建好一个初步...

2018-12-02 10:37:21

阅读数 139

评论数 0

数据比赛整理:西南财经大学-新网银行杯数据科学竞赛

比赛地址:http://www.dcjingsai.com/common/cmpt/%E8%A5%BF%E5%8D%97%E8%B4%A2%E7%BB%8F%E5%A4%A7%E5%AD%A6%E2%80%9C%E6%96%B0%E7%BD%91%E9%93%B6%E8%A1%8C%E6%9D%A...

2018-11-26 12:38:00

阅读数 382

评论数 1

强化学习 DQN算法

(以下内容取自莫凡大神的教程:https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/4-1-A-DQN/) 1,什么是DQN: 一种融合了神经网络和 Q learning 的方法。 2,为...

2018-11-05 11:59:10

阅读数 1478

评论数 0

提示
确定要删除当前文章?
取消 删除