实现感知哈希算法

115 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用Python实现感知哈希算法,该算法用于比较图像的相似度。通过将图像转换为灰度图,缩小尺寸,计算均值并与之比较,形成哈希值。相似度通过比较哈希值的对应位来确定,适用于图像搜索和去重场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实现感知哈希算法

感知哈希算法(Perceptual Hashing)是一种图像相似度比较的算法,可以快速计算并比较图像的哈希值,判断两个图像的相似程度。本文将介绍如何使用Python实现感知哈希算法,并提供相应的源代码。

感知哈希算法的基本原理是将图像转换为灰度图,并将其缩小为一个固定大小的图像。然后,通过计算图像的均值,将图像中的每个像素点与均值进行比较,得到一个布尔值序列,形成图像的哈希值。

下面是使用Python实现感知哈希算法的代码:

import cv2
import numpy as np

def perceptual_hash(image_path, hash_size=8
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值