- 博客(754)
- 资源 (4)
- 收藏
- 关注
转载 中国计算机学会推荐国际学术会议
http://www.ccf.org.cn/xspj/rgzn/https://cmt3.research.microsoft.com/User/Login?ReturnUrl=%2FCVPR2019 prl是模式识别和计算机视觉邻域知名期刊,与之相当的期刊包括ivc,mva,paa,iet-ipr以及iet-cvi等,比之稍好的有tip,cviu以及pr等,顶级期刊是pami和ij...
2017-12-06 13:48:49 1095
转载 基于深度学习的CVaaS计算机视觉即服务案例(Computer Vision as a Service)
技术与技法日进千里,快速迭代过程中,真正能够留下的是应用场景的重构与对新商业范式的思考。CVaaS 计算机视觉即服务的理念介绍观点来源于:极视角科技联合创始人 罗韵CVaaS 就是 Computer Vision as a Service, 我们把 CV 的部分标准化成为了一种服务,而每一个行业可以在这里找到自己行业需要的和图像处理、视频处理、计算机视觉相关
2017-08-09 15:33:45 2214
原创 tw记账 Image Synthesis Image Inpainting MSI Afterburner pycorrector 聚类DBSCAN
sudo ./pycharm.sh嗨,如果您有64位系统,则需要对驱动程序进行签名。此驱动程序未签名,因此您必须通过点击F8 F8 F8重新启动,直到看到启动设置。选择禁用驱动程序签名强制执行,然后您可以安装驱动程序这解决了我的问题。问候约翰内斯self.woshow(self.real_A_seg_sng)def woshow(self,img): #img = t...
2017-04-28 19:21:37 1489 1
转载 支持向量机通俗导论(理解SVM的三层境界)
前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得不够。得益于同学白石的数学证明,我还是想尝试写一下,希望本文在兼顾通俗易懂的基础上,真真正正能足以成为一篇完
2017-04-16 09:47:27 789
原创 Poly-View Contrastive Learning
Contrastive learning typically matches pairs of related views among a number of unrelated negative views. Views can be generated (e.g. by augmentations) or be observed. We investigate matching when there are more than two related views which we call poly-v
2024-06-05 08:49:43 1098
原创 Splatter Image: Ultra-Fast Single-View 3D Reconstruction
We introduce the Splatter Image 11Website: szymanowiczs.github.io/splatter-image网址:szymanowiczs.github.io/splatter-image我们介绍飞溅图像 1, an ultra-fast approach for monocular 3D object reconstruction which operates at 38 FPS. Splatter Image is based on Gaussia
2024-06-03 14:38:01 1521
原创 自动发现特征重要性的可识别对比学习
Existing contrastive learning methods rely on pairwise sample contrast 𝑧𝑥⊤𝑧𝑥′ to learn data representations, but the learned features often lack clear interpretability from a human perspective. Theoretically, it lacks feature identifiability and diffe
2024-05-28 09:53:09 781
转载 AOT-GAN 论文复现AOT-GAN-for-Inpainting项目解读|使用AOT-GAN进行图像修复
现今,使用GAN网络对高分变率图像进行补全时产生的结构扭曲和细节模糊还不是处理得很好。有效利用远距离信息增强填充图像的合理性。提高图像大面积缺失部分的填充质量。使用聚合上下文特征转换生成对抗网络(Aggregated COntextual-Transformation GAN),聚合多尺度上下文特征以增强对远距离特征和丰富结构细节的捕捉。这是通过改进网络结构提出 AOT 模块实现的。采用量身定制的“mask 预测”增强判别器,以使其能够更好的区分生成的部分和原图片部分。
2024-05-21 15:21:08 405 1
原创 非成对意象翻译中的内容制约范式再思考
In an unpaired setting, lacking sufficient content constraints for image-to-image translation (I2I) tasks, GAN-based approaches are usually prone to model collapse. Current solutions can be divided into two categories, reconstruction-based and Siamese netw
2024-05-15 17:37:39 401
原创 Patch-Wise Graph Contrastive Learning for Image Translation
我们将我们的方法与CUT(Park et al. 2020)作为基线模型,以及NEGCUT(Wang et al. 2021),SeSim(Zheng,Cham和Cai 2021)和Hong-SRC(Jung,Kwon和Ye 2022)的改进模型进行了比较。然后,我们得到的邻接矩阵计算的输入图像的补丁之间的语义关系,并共享它的输出图像图。具体地说,我们从一个预训练的编码器,其邻接矩阵是共享的,以提高块之间的输入和输出的关系的一致性的补丁式的相似性的基础上构建的图。表1中的结果也支持所提出的方法的优越性。
2024-05-14 16:04:37 654
原创 Unsupervised Image-to-Image Translation Networks
Unsupervised image-to-image translation aims at learning a joint distribution of images in different domains by using images from the marginal distributions in individual domains. Since there exists an infinite set of joint distributions that can arrive th
2024-05-13 15:08:53 949
原创 学习3D几何和特征一致的高斯溅射目标去除
earning 3D Geometry and Feature Consistent Gaussian Splatting for Object Removal学习3D几何和特征一致的高斯溅射目标去除Yuxin Wang王玉欣HKUST&Qianyi WuMonash University&Guofeng ZhangZhejiang University&Dan XuHKUST香港科技大学&吴倩怡莫纳什大学&张国锋浙江大学&徐丹香港科
2024-05-10 17:59:12 970
原创 GaussianBody:基于3D高斯散射的服装人体重建
In this work, we propose a novel clothed human reconstruction method called GaussianBody, based on 3D Gaussian Splatting. Compared with the costly neural radiance-based models, 3D Gaussian Splatting has recently demonstrated great performance in terms of t
2024-05-09 19:10:29 607
原创 TalkingGaussian:基于高斯溅射的结构保持3D说话人头合成
Radiance fields have demonstrated impressive performance in synthesizing lifelike 3D talking heads. However, due to the difficulty in fitting steep appearance changes, the prevailing paradigm that presents facial motions by directly modifying point appeara
2024-05-07 10:23:20 927
原创 GenN2N: Generative NeRF2NeRF Translation
We present GenN2N, a unified NeRF-to-NeRF translation framework for various NeRF translation tasks such as text-driven NeRF editing, colorization, super-resolution, inpainting, etc. Unlike previous methods designed for individual translation tasks with tas
2024-04-26 14:30:03 411
原创 Identifying Unnecessary 3D Gaussians using Clustering for Fast Rendering of 3D Gaussian Splatting
基于聚类的三维高斯散射快速绘制算法。
2024-04-24 10:07:57 449
原创 基于深度正则化的少镜头图像三维高斯溅射优化
In this paper, we present a method to optimize Gaussian splatting with a limited number of images while avoiding overfitting. Representing a 3D scene by combining numerous Gaussian splats has yielded outstanding visual quality. However, it tends to overfit
2024-04-23 12:21:21 926
原创 GaussianEditor:快速可控的3D编辑与高斯飞溅
在不断发展的计算机视觉领域,开发用户友好的3D表示和编辑算法是一个关键目标。这些技术在各种应用中至关重要,从数字游戏到不断增长的MetaVerse。传统的3D表示(如网格和点云)由于其交互式编辑功能而受到青睐。然而,这些方法在精确渲染复杂的3D场景方面面临挑战。
2024-04-23 10:53:29 1068
原创 基于高斯壳映射的高效三维人体生成
Efficient generation of 3D digital humans is important in several industries, including virtual reality, social media, and cinematic production. 3D generative adversarial networks (GANs) have demonstrated state-of-the-art (SOTA) quality and diversity for g
2024-04-23 10:37:36 669
原创 负采样重要吗?它的理论与应用综述
Does Negative Sampling Matter? A Review with Insights into its Theory and Applications负采样重要吗?它的理论与应用综述Does Negative Sampling Matter? A Review with Insights into its Theory and ApplicationsZhen Yang, Ming Ding, Tinglin Huang, Yukuo Cen, Junshuai Song,
2024-04-21 16:46:21 1196
原创 InFusion:通过从扩散先验学习深度完成来修复3D高斯
3D Gaussians have recently emerged as an efficient representation for novel view synthesis. This work studies its editability with a particular focus on the inpainting task, which aims to supplement an incomplete set of 3D Gaussians with additional points
2024-04-21 10:10:28 1252
原创 Gamba:将高斯溅射与Mamba结合用于单视图3D重建
We tackle the challenge of efficiently reconstructing a 3D asset from a single image with growing demands for automated 3D content creation pipelines. Previous methods primarily rely on Score Distillation Sampling (SDS) and Neural Radiance Fields (NeRF). D
2024-04-21 09:58:38 1173
原创 三维高斯溅射的精确松弛约束
3D Gaussian splatting (3DGS) has recently demonstrated impressive capabilities in real-time novel view synthesis and 3D reconstruction. However, 3DGS heavily depends on the accurate initialization derived from Structure-from-Motion (SfM) methods. When trai
2024-04-21 09:52:07 808
原创 3D感知生成对抗网络的高斯溅射解码器
Gaussian Splatting Decoder for 3D-aware Generative Adversarial Networks3D感知生成对抗网络的高斯溅射解码器Florian Barthel1, 2 Arian Beckmann1 Wieland Morgenstern1 Anna Hilsmann1 Peter Eisert1,2Florian Barthel1, 2阿里安·贝克曼Wieland晨星Anna Hilsmann彼得·艾泽特1,21Fraunhofe
2024-04-21 09:43:31 1040
原创 Spec-Gaussian:3D高斯溅射的各向异性视图相关外观
The recent advancements in 3D Gaussian splatting (3D-GS) have not only facilitated real-time rendering through modern GPU rasterization pipelines but have also attained state-of-the-art rendering quality. Nevertheless, despite its exceptional rendering qua
2024-04-21 08:44:43 1253
原创 解析溅射:通过解析积分进行抗混叠的3D高斯溅射
The 3D Gaussian Splatting (3DGS) gained its popularity recently by combining the advantages of both primitive-based and volumetric 3D representations, resulting in improved quality and efficiency for 3D scene rendering. However, 3DGS is not alias-free, and
2024-04-21 08:34:13 1180
原创 GaussianCube:使用最优传输构造高斯溅射用于3D生成建模
3D Gaussian Splatting (GS) have achieved considerable improvement over Neural Radiance Fields in terms of 3D fitting fidelity and rendering speed. However, this unstructured representation with scattered Gaussians poses a significant challenge for generati
2024-04-21 08:25:48 1266
原创 Recent Advances in 3D Gaussian Splatting
Recent Advances in 3D Gaussian Splatting,author = Tong Wu 1 ,Yu-Jie Yuan 1 ,Ling-Xiao Zhang 1 ,Jie Yang 1 ,Yan-Pei Cao 2 ,Ling-Qi Yan 3 ,and Lin Gao 1 \cor,runauthor = T.吴玉- J Yuan,L.-张旭,杨俊,杨毅- P Cao,L.- Q Yan,L.三维高斯溅射(3DGS)的出现大大加快了新视图合成的绘制速度。与神经辐射场(NeRF)等
2024-04-17 14:14:59 1410
原创 PSAvatar:一种基于点的可变形形状模型,用于3D高斯溅射的实时头部化身创建
Despite much progress, achieving real-time high-fidelity head avatar animation is still difficult and existing methods have to trade-off between speed and quality. 3DMM based methods often fail to model non-facial structures such as eyeglasses and hairstyl
2024-04-16 10:47:16 593
原创 用于密集视觉冲击的紧凑三维高斯散射Compact 3D Gaussian Splatting For Dense Visual SLAM
Recent work has shown that 3D Gaussian-based SLAM enables high-quality reconstruction, accurate pose estimation, and real-time rendering of scenes. However, these approaches are built on a tremendous number of redundant 3D Gaussian ellipsoids, leading to h
2024-04-16 10:35:18 603
原创 FreGS:具有渐进频率正则化的3D高斯溅射
3D Gaussian splatting has achieved very impressive performance in real-time novel view synthesis. However, it often suffers from over-reconstruction during Gaussian densification where high-variance image regions are covered by a few large Gaussians only,
2024-04-15 15:57:04 1398
原创 MVSplat:稀疏多视点图像的高效3D高斯溅射
We propose MVSplat, an efficient feed-forward 3D Gaussian Splatting model learned from sparse multi-view images. To accurately localize the Gaussian centers, we propose to build a cost volume representation via plane sweeping in the 3D space, where the cro
2024-04-15 15:49:12 1263
原创 View-Consistent 3D Editing with Gaussian Splatting
The advent of 3D Gaussian Splatting (3DGS) has revolutionized 3D editing, offering efficient, high-fidelity rendering and enabling precise local manipulations. Currently, diffusion-based 2D editing models are harnessed to modify multi-view rendered images,
2024-04-12 15:24:58 591
原创 Sketch3D:用于草图到3D生成的样式一致性指南
Recently, image-to-3D approaches have achieved significant results with a natural image as input. However, it is not always possible to access these enriched color input samples in practical applications, where only sketches are available. Existing sketch-
2024-04-11 15:47:54 1159
原创 GGRt: Towards Pose-free Generalizable 3D Gaussian Splatting in Real-time
This paper presents GGRt, a novel approach to generalizable novel view synthesis that alleviates the need for real camera poses, complexity in processing high-resolution images, and lengthy optimization processes, thus facilitating stronger applicability o
2024-04-11 15:37:30 1317
原创 StylizedGS: Controllable Stylization for 3D Gaussian Splatting
With the rapid development of XR, 3D generation and editing are becoming more and more important, among which, stylization is an important tool of 3D appearance editing. It can achieve consistent 3D artistic stylization given a single reference style image
2024-04-11 12:50:19 864
原创 Pixel-GS:用于3D高斯溅射的具有像素感知梯度的密度控制
3D Gaussian Splatting (3DGS) has demonstrated impressive novel view synthesis results while advancing real-time rendering performance. However, its efficacy heavily relies on the quality of the initial point cloud, leading to blurring and needle-like artif
2024-04-11 10:41:07 1441
原创 Deblurring 3D Gaussian Splatting去模糊3D高斯溅射
Recent studies in Radiance Fields have paved the robust way for novel view synthesis with their photorealistic rendering quality. Nevertheless, they usually employ neural networks and volumetric rendering, which are costly to train and impede their broad u
2024-04-11 10:34:41 1147
原创 StyleNeRF:一个基于样式的3D感知生成器,用于高分辨率图像合成
StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image SynthesisStyleNeRF:一个基于样式的3D感知生成器,用于高分辨率图像合成Jiatao Gu†, Lingjie Liu‡, Peng Wang⋄, Christian Theobalt‡顾家涛 † ,刘玲杰 ‡ ,王鹏 ⋄ ,克里斯蒂安·西奥博尔特 ‡†Facebook AI ‡Max Planck Institute for Info
2024-04-11 09:38:17 1013
原创 ImplicitDeepfake:通过使用NeRF和高斯溅射的隐式Deepfake生成的合理换脸
相比之下,GS通过将对象的特征编码在高斯分布的集合中,提供了加速的训练和推理,而不会降低渲染质量。deepfake的示例方法由生成高保真单次转移(GHOST)(Groshev等人,2022),其中作者建立在FaceShifter(Li等人,2019)模型作为起点,并介绍了deepfake的质量和稳定性的几个增强功能。为了获得真实的单词3D对象,我们使用新颖的、最先进的基于机器学习的方法,例如神经辐射场(NeRFs)(Mildenhall等人,2020)和高斯溅射(GS)(Kerbl等人,2023年)。
2024-04-11 09:10:05 912
dlib安装 dlib-19.19.0-cp38-cp38-win_amd64.whl.whl
2022-04-20
dlib-19.17.99-cp37-cp37m-win_amd64.whl
2022-04-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人