贪心算法:只考虑当前的情况,考虑局部的最优解,并不考虑全局的结构
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1:
输入: [2,3,1,1,4]
输出: true
解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。
示例 2:
输入: [3,2,1,0,4]
输出: false
解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
package number5;
public class Solution2 {
public static void main(String[] args) {
int[] nums= {0,2,3};
System.out.println(canJump(nums));
}
public static boolean canJump(int[] nums) {
int x=0;
int max=x+nums[x];//代表当前能到达的最远位置
for (x =0; x <= max; x++) {
if(max>=nums.length-1)
return true;
else if(max<x+nums[x])
max=x+nums[x];
}
return false;
}
}
在一个「平衡字符串」中,‘L’ 和 ‘R’ 字符的数量是相同的。
给出一个平衡字符串 s,请你将它分割成尽可能多的平衡字符串。
返回可以通过分割得到的平衡字符串的最大数量。
示例 1:
输入:s = “RLRRLLRLRL”
输出:4
解释:s 可以分割为 “RL”, “RRLL”, “RL”, “RL”, 每个子字符串中都包含相同数量的 ‘L’ 和 ‘R’。
示例 2:
输入:s = “RLLLLRRRLR”
输出:3
解释:s 可以分割为 “RL”, “LLLRRR”, “LR”, 每个子字符串中都包含相同数量的 ‘L’ 和 ‘R’。
示例 3:
输入:s = “LLLLRRRR”
输出:1
解释:s 只能保持原样 “LLLLRRRR”.
提示:
1 <= s.length <= 1000
s[i] = ‘L’ 或 ‘R’
分割得到的每个字符串都必须是平衡字符串。
package number5;
import java.util.Stack;
public class Solution1 {
public static void main(String[] args) {
String s="LLLLRLRLRLRRRRRL";
System.out.println(balancedStringSplit(s));
}
public static int balancedStringSplit(String s) {
char[] a=s.toCharArray();
int cnt = 0;
int balance = 0;
for(int i = 0; i < a.length; i++){
if(a[i] == 'L')
balance --;
if(a[i] == 'R')
balance ++;
if(balance == 0)
cnt ++;
}
return cnt;
}