基于MATLAB的遗传算法优化小波神经网络股票开盘指数预测
近年来,股票市场的波动性日益增加,投资者对于准确预测股票价格的需求也越来越迫切。传统的统计学方法对于预测复杂非线性关系的股票数据效果较差,因此需要更加高效、准确的预测模型。本文将介绍一种基于MATLAB的遗传算法优化小波神经网络模型,用于股票开盘指数的预测。
-
数据准备
首先,我们需要收集历史股票数据作为训练集和测试集。这些数据可以包括开盘价、最高价、最低价、收盘价等信息。在本文中,我们仅以开盘价为例进行预测。 -
小波神经网络模型
小波神经网络(Wavelet Neural Network,WNN)是一种基于小波变换理论和神经网络结构相结合的模型。它通过将输入信号进行小波分解,得到具有不同频率特征的子信号,然后利用神经网络进行学习和预测。
在MATLAB中,可以使用Wavelet Toolbox来实现小波分解和小波神经网络模型的构建。首先,需要选择合适的小波基函数和分解层数。然后,将训练集输入到小波网络中进行训练,得到预测模型。
以下是MATLAB代码示例:
% 数据准备
data =