基于COA算法求解单目标问题的MATLAB源码
COA (Coyote Optimization Algorithm) 算法是一种基于自然界中郊狼的行为模式而设计出来的新型优化算法。其核心思想是通过模拟自然界中郊狼的寻食行为,来寻找最优解。COA算法被广泛应用于各种优化问题的求解中,本文将介绍如何使用COA算法来解决单目标问题,并提供相应的MATLAB源码。
单目标问题是指在优化过程中只有一个目标函数需要优化。下面以 Rosenbrock 函数为例,介绍如何使用COA算法来解决单目标问题。
Rosenbrock 函数是一个经典的测试函数,可以用来评估一个优化算法的性能。其公式为:
f(x,y) = (1-x)2+100(y-x2)^2
其中,x 和 y 是 Rosenbrock 函数的自变量,f(x,y) 是 Rosenbrock 函数的因变量。
接下来,我们使用 COA 算法来求解 Rosenbrock 函数的最小值。
% 初始化参数
dim = 2; % 自变量数量
pop_size = 30; % 种群大小
max_iter = 500; % 迭代次数
lb = [-5,-5]; % 自变量下界
ub = [5,5]; % 自变量上界
fobj = @(x) (1-x(1))2+100*(x(2)-x(1)2)^2; % 目标函数