用Matlab实现BP神经网络

本文介绍了如何使用Matlab实现BP神经网络,通过Iris数据集为例,讲解了网络结构设定、数据划分、防止过拟合的措施,并提供了完整的训练和测试过程,最后计算了分类准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用Matlab实现BP神经网络

BP神经网络是一种常见的前馈神经网络,也是目前深度学习的基础之一。它能够完成分类、预测等工作,并且在工业控制、模式识别、自然语言处理等领域得到广泛应用。本文将介绍如何使用Matlab实现BP神经网络,并提供相应的代码示例。

首先,我们需要准备训练数据。这里以Iris数据集为例,该数据集包含150个样本,每个样本有4个属性和1个类别标签。为了方便起见,我们将数据集分成训练集和测试集,其中训练集占70%,测试集占30%。

load fisheriris                         % 加载Iris数据集
X = meas;                               % 属性矩阵
Y = zeros(150,</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值