Python中机器学习算法(sklearn)的超参数优化:使用贝叶斯搜索算法进行最优化

本文介绍了如何在Python中利用skopt库的贝叶斯搜索算法进行机器学习模型(如SVM)的超参数优化。通过定义目标函数和超参数范围,针对手写数字分类问题,进行超参数C、kernel和gamma的优化,以提高模型性能。最终展示最佳得分及对应的最佳参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python中机器学习算法(sklearn)的超参数优化:使用贝叶斯搜索算法进行最优化

在机器学习模型中,模型的性能不仅受决策边界的划分影响,还受超参数的调节影响,由于超参数的选择是基于经验和试验的,因此,找到最佳超参数的过程是一个关键的挑战。本文介绍了如何使用skopt库中的贝叶斯搜索算法实现参数优化。

首先,让我们准备一个示例模型和数据集:

from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

X, y 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值