基于极限学习机实现数据分类附 MATLAB 代码

本文介绍了如何使用 MATLAB 实现极限学习机(ELM)算法进行数据分类。通过创建数据集,训练模型,以及进行预测,详细阐述了ELM的实现过程,并提供了相应的MATLAB代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于极限学习机实现数据分类附 MATLAB 代码

极限学习机(Extreme Learning Machine,简称ELM)是一种快速且高效的机器学习算法,适用于解决数据分类问题。在本文中,我们将介绍如何使用 MATLAB 实现基于极限学习机的数据分类,并附上相应的源代码。

首先,我们需要准备数据集。假设我们有一个包含N个样本的数据集,每个样本有M个特征。我们将数据集表示为一个N行M列的矩阵X,其中每一行表示一个样本,每一列表示一个特征。此外,我们还需要一个N行1列的向量Y,用于存储每个样本的类标签。

接下来,我们可以开始实现极限学习机算法。以下是实现该算法的 MATLAB 代码:

function [W, b, H] = elm_train(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值