飞浆ERNIE百亿级大模型在中文短文本分类任务上的应用

155 篇文章 32 订阅 ¥59.90 ¥99.00
本文介绍了使用飞桨(PaddlePaddle)的ERNIE百亿级大模型进行中文短文本分类的方法,包括环境搭建、文本预处理、模型应用和分类步骤。通过示例代码展示如何处理文本和获取分类标签,强调了飞桨ERNIE模型在NLP任务中的优秀表现。
摘要由CSDN通过智能技术生成

随着深度学习技术的不断发展,自然语言处理领域也取得了令人瞩目的成就。飞桨(PaddlePaddle)作为国内领先的深度学习框架,凭借其强大的计算性能和丰富的模型库,为我们实现中文短文本分类任务提供了一个高效且可靠的解决方案。其中,基于飞桨的ERNIE百亿级大模型尤为引人关注,其在NLP任务中表现出色。

本文将介绍如何使用飞桨ERNIE百亿级大模型来实现中文短文本分类任务,并提供相应的源代码。

首先,我们需要搭建环境并安装必要的依赖。以下是相关的代码:

import paddle
from paddlenlp.transformers import ErnieTokenizer, ErnieForSequenceClassification

# 设置设备
paddle.set_device(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值