[原创](计算机数学)(The Probability Lifesaver)(P13): 指数母函数(Fonction Génératrice Exponentielle)生成伯努利数?

[作者]
常用网名: 猪头三
出生日期: 1981.XX.XX
企鹅交流: 643439947
个人网站: 80x86汇编小站
编程生涯: 2001年~至今[共24年]
职业生涯: 22年
开发语言: C/C++、80x86ASM、Object Pascal、Objective-C、C#、R、Python、PHP、Perl、
开发工具: Visual Studio、Delphi、XCode、C++ Builder、Eclipse
技能种类: 逆向 驱动 磁盘 文件 大数据分析
涉及领域: Windows应用软件安全/Windows系统内核安全/Windows系统磁盘数据安全/macOS应用软件安全
项目经历: 股票模型量化/磁盘性能优化/文件系统数据恢复/文件信息采集/敏感文件监测跟踪/网络安全检测
专注研究: 机器学习、股票模型量化、金融分析

[序言]
在计算机数学与概率论的学习中, 伯努利数(Bernoulli numbers)扮演着重要角色. 它们不仅与级数求和、无穷级数展开紧密相关, 也是数值积分、差分方法以及离散傅里叶变换等领域的基础工具之一. 对于希望深入了解数值分析和组合数学的读者而言, 掌握伯努利数的生成方法具有十分重要的意义.

[描述]
根据伯努利数的生成函数:指数母函数(Fonction Génératrice Exponentielle), 如果假设 n=1 时,如何求出伯努利数B1?

[详细推导]


1. 指数母函数

x e x − 1    =    ∑ n = 0 ∞ B n   x n n ! . \frac{x}{e^x - 1} \;=\; \sum_{n=0}^\infty B_n\,\frac{x^n}{n!}. ex1x=n=0Bnn!xn.

我们的目标是读出一次项系数 B 1 B_1 B1


2. 分母展开

首先将 e x − 1 e^x - 1 ex1 x = 0 x=0 x=0 处展开:

e x − 1 = x + x 2 2 + x 3 6 + ⋯ = x ( 1 + x 2 + x 2 6 + ⋯   ) . e^x - 1 = x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots = x\Bigl(1 + \tfrac{x}{2} + \tfrac{x^2}{6} + \cdots\Bigr). ex1=x+2x2+6x3+=x(1+2x+6x2+).

因此

x e x − 1 = 1   1 + x 2 + x 2 6 + ⋯   = ( 1 + a 1 x + a 2 x 2 + ⋯   ) − 1 , \frac{x}{e^x - 1} = \frac{1}{\,1 + \tfrac{x}{2} + \tfrac{x^2}{6} + \cdots\,} = \bigl(1 + a_1 x + a_2 x^2 + \cdots\bigr)^{-1}, ex1x=1+2x+6x2+1=(1+a1x+a2x2+)1,

其中 a 1 = 1 2 a_1 = \tfrac12

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性和缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
基于Python+OpenCV的全景图像拼接系统设计与实现 本系统的设计与实现基于Python和OpenCV,旨在提供一个高效、准确的全景图像拼接系统。系统的前台界面使用了最新的HTML5技术,使用DIV+CSS进行布局,使整个前台页面变得更美观,极大的提高了用户的体验。后端的代码技术选择的是PYTHON,PYTHON语言是当下最常用的编程语言之一,可以保证系统的稳定性和流畅性,PYTHON可以灵活的与据库进行连接。 系统的据使用的MYSQL据库,它可以提高查询的速度,增强系统据存储的稳定性和安全性。同时,本系统的图像拼接技术以OpenCV为核心,最大化提升图片拼接的质量。 本系统的设计与实现可以分为以下几个部分: 一、系统架构设计 本系统的架构设计主要基于Python和OpenCV,使用MYSQL据库存储据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL据库,实现图像拼接功能。 二、图像拼接算法 本系统使用OpenCV库实现图像拼接,OpenCV库提供了丰富的图像处理功能,可以实现图像拼接、图像识别、图像处理等功能。通过OpenCV库,可以实现高效、准确的图像拼接。 三、系统实现 本系统的实现主要基于Python和OpenCV,使用MYSQL据库存储据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL据库,实现图像拼接功能。同时,本系统还实现了用户认证、据加密、据备份等功能,以确保系统的安全和稳定性。 四、系统优点 本系统的优点有: * 高效:本系统使用OpenCV库实现图像拼接,可以实现高效的图像拼接。 * 准确:本系统使用OpenCV库实现图像拼接,可以实现准确的图像拼接。 * 安全:本系统实现了用户认证、据加密、据备份等功能,以确保系统的安全和稳定性。 * 灵活:本系统使用PYTHON语言,可以灵活的与据库进行连接,实现灵活的图像拼接功能。 本系统的设计与实现可以提供一个高效、准确的全景图像拼接系统,为用户提供了一个方便、快捷的图像拼接体验。
在统计学和金融工程领域,Copula函是一种强大的工具,用于建立不同随机变量之间的依赖关系。Copula理论允许我们独立地处理每个变量的边际分布,同时保持它们之间的联合分布。在给定的压缩包文件中,我们可以看到一系列与Copula函相关的MATLAB脚本,这些脚本主要用于估计Copula参和构建混合Copula模型。 标题“copula_wireo3t_估计copula参_混合copula函_matlabcopula_matlabcopula函”表明了这个项目的核心内容,它涉及到了一个特定的Copula类型——Wireo3t Copula,以及如何在MATLAB环境中使用内置的`matlabcopula`函库进行参估计和混合Copula的构建。 描述提到的“基于EM估计”(Expectation-Maximization算法)是统计学中的一种常用参估计方法,尤其适用于处理据不完整或者存在缺失值的情况。EM算法通过迭代过程来最大化似然函,从而估计模型参。 以下是各文件的简要介绍: 1. `copula1.m`: 这可能是一个主程序或示例,用于调用其他函并执行混合Copula的建模和参估计过程。 2. `cmlstat.m`: CML(Covariance Matrix Likelihood)统计量通常用于检验Copula函的适用性,此函可能是计算这一统计量的实现。 3. `coop.m`: 可能包含了各种Copula函的定义,包括Wireo3t Copula,以及其他可能用到的Copula类型。 4. `mcopulacml.m`: 这个函可能是用来计算混合Copula的CML似然函,用于EM算法的E(期望)步骤。 5. `copux.m`: 这个函可能是用于计算特定Copula类型的联合累积分布函(CDF)或其逆函,这是进行依赖结构分析的关键部分。 6. `mcopula.m`: “混合Copula”的实现,它可能包括了如何结合多个Copula模型以构建更复杂的依赖结构。 在实际应用中,混合Copula模型能够更好地捕捉据中的复杂依赖模式,因为它允许使用多种Copula类型来描述不同部分的依赖性。MATLAB的`matlabcopula`库提供了丰富的函,使得用户能够方便地进行Copula建模和分析。 为了详细理解这些脚本,你需要具备MATLAB编程基础,对Copula理论有深入理解,并了解EM算法的工作原理。通过运行这些脚本,你可以估计Wireo3t Copula或其他Copula模型的参,评估不同 Copula 函的适用性,并构建混合Copula模型,以适应不同据集的依赖特性。这些工具和方法在风险管理和金融工程中非常有用,因为它们可以帮助我们更准确地理解和模拟随机变量间的复杂关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我不是代码教父

我的创作动力离不开你的真诚激励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值