package com.heu.wsq.leetcode.dp;
/**
* 213. 打家劫舍 II
* @author wsq
* @date 2021/4/15
* 你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
* 给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。
*
* 示例 1:
*
* 输入:nums = [2,3,2]
* 输出:3
* 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
* 示例 2:
*
* 输入:nums = [1,2,3,1]
* 输出:4
* 解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
* 偷窃到的最高金额 = 1 + 3 = 4 。
*
* 链接:https://leetcode-cn.com/problems/house-robber-ii
*/
public class Rob {
/**
* 该题最大的亮点就是首尾相连,从而导致直接使用dp去做,最后一位不知道第一位是否已经选了
* 所以,遇见首尾相连不能同时选的时候,直接分成两部分去做
* 第一部分: 去求[0, n-2]能偷的最大值
* 第二部分:去求[1, n-1]能偷的最大值
* 最后的答案是两个最大值其中最大的那个。
* @param nums
* @return
*/
public int rob(int[] nums) {
int n = nums.length;
if(n == 1){
return nums[0];
}else if(n == 2){
return Math.max(nums[0], nums[1]);
}
return Math.max(robRange(nums, 0, n - 2), robRange(nums, 1, n-1));
}
private int robRange(int[] nums, int start, int end){
int[] f = new int[nums.length];
f[start] = nums[start];
f[start + 1] = Math.max(nums[start], nums[start + 1]);
for(int i = start + 2; i <= end; i++){
f[i] = Math.max(f[i - 2] + nums[i], f[i-1]);
}
return f[end];
}
}