213. 打家劫舍 II(动态规划)

package com.heu.wsq.leetcode.dp;

/**
 * 213. 打家劫舍 II
 * @author wsq
 * @date 2021/4/15
 * 你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
 * 给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。
 *
 * 示例 1:
 *
 * 输入:nums = [2,3,2]
 * 输出:3
 * 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
 * 示例 2:
 *
 * 输入:nums = [1,2,3,1]
 * 输出:4
 * 解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
 *      偷窃到的最高金额 = 1 + 3 = 4 。
 *
 * 链接:https://leetcode-cn.com/problems/house-robber-ii
 */
public class Rob {
    /**
     * 该题最大的亮点就是首尾相连,从而导致直接使用dp去做,最后一位不知道第一位是否已经选了
     * 所以,遇见首尾相连不能同时选的时候,直接分成两部分去做
     * 第一部分: 去求[0, n-2]能偷的最大值
     * 第二部分:去求[1, n-1]能偷的最大值
     * 最后的答案是两个最大值其中最大的那个。
     * @param nums
     * @return
     */
    public int rob(int[] nums) {
        int n = nums.length;
        if(n == 1){
            return nums[0];
        }else if(n == 2){
            return Math.max(nums[0], nums[1]);
        }
        return Math.max(robRange(nums, 0, n - 2), robRange(nums, 1, n-1));
    }

    private int robRange(int[] nums, int start, int end){
        int[] f = new int[nums.length];
        f[start] = nums[start];
        f[start + 1] = Math.max(nums[start], nums[start + 1]);
        for(int i = start + 2; i <= end; i++){
            f[i] = Math.max(f[i - 2] + nums[i], f[i-1]);
        }
        return f[end];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值