深度神经网络:WX+b vs XW+b

作者:chen_h
微信号 & QQ:862251340
微信公众号:coderpai
简书地址:https://www.jianshu.com/p/856a5b424d6b


在大多数的神经网络教科书中,神经网络一般都会使用 y = WX+B 或者 y = XW+B 的形式。但是在 tensorflow 或者 theano 中,神经网络的实现都是采用了 y = XW+B 的形式。这是为什么呢?我花了很多的时间去查找资料,最后发现一点,可能是 y = XW+B 计算导数比 y = WX+B 容易。

从理论上讲,XW+B 和 WX+B 在神经网络中是等价的(其实就是一个矩阵的转置)。然而,当我们计算两者的导数的时候却差别很大。我们通过具体的数学推导来感受一下吧。

比如:y = XW

比如:y = WX


原文
matrix cookbook

作者:chen_h
微信号 & QQ:862251340
简书地址:https://www.jianshu.com/p/856a5b424d6b

CoderPai 是一个专注于算法实战的平台,从基础的算法到人工智能算法都有设计。如果你对算法实战感兴趣,请快快关注我们吧。加入AI实战微信群,AI实战QQ群,ACM算法微信群,ACM算法QQ群。长按或者扫描如下二维码,关注 “CoderPai” 微信号(coderpai)

这里写图片描述


这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值