深度学习
coderpai
微信公众号:CoderPai
专注于人工智能在量化交易的应用,以程序员的角度思考金融问题。
展开
-
什么是机器学习管道? 如何创建一个?
作者:chen_h微信号 & QQ:862251340微信公众号:coderpai熟悉机器学习管道机器学习管道用于帮助自动化机器学习工作流程。它们的工作方式是使一系列数据可以在一个模型中进行转换和关联,该模型可以进行测试和评估以实现结果,无论结果是正面还是负面。机器学习(ML)管道包括几个训练模型的步骤。机器学习流水线是迭代的,因为每个步骤都被重复执行,以不断提高模型的准确性并...原创 2019-12-16 21:56:56 · 2743 阅读 · 1 评论 -
什么时候业务分析师需要使用线性回归
作者:chen_h微信号 & QQ:862251340微信公众号:coderpai以前有一位特别具有冒险精神的商业分析师将其在职业生涯的早期阶段尝试根据特定数据集中的模式来预测结果,这种冒险通常以线性回归的形式进行,这是一种简单而强大的预测方法,可以使用常用的业务工具来快速实现。对于这个新发现的技能,虽然他是非常有用的,但是它被过度使用了,所有人遇到数据分析一上来就是线性回归,...原创 2019-03-01 17:30:20 · 1892 阅读 · 0 评论 -
线性回归:从贝叶斯角度分析
作者:chen_h微信号 & QQ:862251340微信公众号:coderpai我们都知道学习机器学习时学到的第一个模型就是线性回归。这是一个非常简单,直观和激发我们深入到机器学习的模型。线性回归可以在几个观点中直观的解释,例如:几何和频率统计。从频率统计的角度来看,通常应该会谈论到贝叶斯。因此从这篇文章中,我们将从贝叶斯的角度来简单分析一下线性规划。线性回归:回顾回想一下...原创 2019-03-08 11:21:01 · 1794 阅读 · 0 评论 -
回归分析初学者指南
作者:chen_h微信号 & QQ:862251340微信公众号:coderpai介绍机器学习之路从回归开始,这是我们每个人都知道的道路。如果你想成为数据科学家,回归是你需要学习掌握的第一个算法。直到今天,许多咨询公司还是使用更大规模的回归技术来帮助他们的客户解决问题,毫无疑问,它是最容易学习和解释的算法之一,但是你要用好还是非常难的。回归模型的初始化非常容易,但是优化模型以获...原创 2019-03-20 21:25:48 · 1532 阅读 · 0 评论 -
决策树入门
作者:chen_h微信号 & QQ:862251340微信公众号:coderpai决策树学习算法根据训练数据来生成决策树,以解决分类和回归问题。比如,你思考一个问题,你想去外面打网球比赛。现在的问题是决定去打哪一场的网球比赛。现在这取决于各种因素,比如时间,天气,温度等等。我们将这些因素称为影响我们决策的特征。如果你能记录下你所做的所有因素和决定,你就可以有更大的概率获得比赛的冠军...原创 2019-04-08 18:03:44 · 431 阅读 · 0 评论 -
【转】机器学习会颠覆测试工程师的工作吗?
作者:chen_h微信号 & QQ:862251340微信公众号:coderpai人工智能应用概述自从 2016 年 AlphaGo 以 4:1 战胜了围棋九段李世乭,人工智能的威力在公众面前得到了充分的展现。这种基于改进的蒙特卡洛树搜索、残差卷积神经网络的强化学习系统首次向公众展示了其超越人类智慧的强大的力量,也使 AI 变得更加广为人知。之后各行各业都出现了大量的基于 AI ...转载 2019-04-28 11:03:53 · 914 阅读 · 0 评论 -
一步一步学习 C4.5 算法
作者:chen_h微信号 & QQ:862251340微信公众号:coderpai决策树现在仍然是数据科学界的热门话题。 在这里,ID3是最常见的传统决策树算法,但它有瓶颈。 属性必须是名义值,数据集不得包含缺失数据,最后算法往往会过度拟合。 在这里,ID3的发明者Ross Quinlan对这些瓶颈做了一些改进,并创建了一个名为C4.5的新算法。**(ID3 还有一些什么瓶颈,需要...原创 2019-04-30 17:33:05 · 501 阅读 · 0 评论 -
(二)bagging 方法
作者:chen_h微信号 & QQ:862251340微信公众号:coderpai在之前的文章中,你看到了不同的分类算法以及如何正确验证和评估模型质量的技术。现在,我假设你已经为你的问题选择了最佳模型,并且正在努力进一步提高其准确性。在这种情况下,你需要应用一些更高级的机器学习技术,其中有一种技术就是集成学习。集成学习是由一组共同分类器或者不同分类器来作为一个整体。举个例子,比如...原创 2019-06-05 13:16:10 · 8773 阅读 · 0 评论 -
(九)AdaBoost 中参数对于决策边界复杂度分析
作者:chen_h微信号 & QQ:862251340微信公众号:coderpai(一)机器学习中的集成学习入门(二)bagging 方法(三)使用Python进行交易的随机森林算法(四)Python中随机森林的实现与解释(五)如何用 Python 从头开始实现 Bagging 算法(六)如何利用Python从头开始实现随机森林算法(七)AdaBoost 简介(八)P...原创 2019-07-28 18:01:05 · 1246 阅读 · 0 评论 -
优化是机器学习的核心
作者:chen_h微信号 & QQ:862251340微信公众号:coderpai优化是数据科学中几乎所有机器学习和统计技术的核心。今天我们讨论一下最流行的机器学习/统计建模方法背后的核心优化框架。介绍通常,数据科学和机器学习的新人,我们都会要求他们去学习尽可能多的统计学知识和线性代数。在这两个学科中建立扎实的基础,这对后期学习各种数据科学和机器学习都是非常有好处的。然而,我们...原创 2019-01-15 12:21:50 · 943 阅读 · 1 评论 -
第二课 | Machine Learning for Trading
作者:chen_h 微信号 & QQ:862251340 微信公众号:coderpaiLESSON 2 的课程主要是三个方面:CAPM 的学习均线的使用EMH 的学习主动投资优化理论第二课的内容比较简单,重点在 sharpe ratio 的学习和投资组合的学习,我找了一些课外资料,可以看一下。CAPM:https://www.investopedi...原创 2018-09-10 17:21:52 · 1207 阅读 · 0 评论 -
SSD 用于实时物体检测
卷积神经网络(CNN)在物体识别中由于其他的神经网络架构,所以研究人员很快对 CNN 进行了改进以使得它们能更好的对物体进行定位和检测,这种神经网络架构就被称为 R-CNN(Region-CNN)。R-CNN 的输出是具有矩形框的图像,以下是 R-CNN 如何工作的步骤:使用称为可能性搜索的算法扫描整个输入图像,用来查询可能的对象,并生成大约 2000 个区域提议;在每个区域提案上运行 C...原创 2018-07-16 19:37:26 · 2731 阅读 · 0 评论 -
The CoderPai Day in AI - Issue #14
今天分享: (1)在不同GPU上面进行TensorFlow的基准测试; (2)机器学习(深度学习)会议汇总; (3)从零开始构建深度学习网络; (4)Keras实现迁移学习; (5)利用 TensorFlow 实现字符级别的神经网络语言模型;1.【博客】Benchmarking Tensorflow Performance and Cost Across Different GPU Opt原创 2017-04-23 08:41:01 · 655 阅读 · 0 评论 -
(二)非线性循环神经网络(RNN)
作者:chen_h 微信号 & QQ:862251340 微信公众号:coderpai 这篇教程是翻译Peter Roelants写的循环神经网络教程,作者已经授权翻译,这是原文。该教程将介绍如何实现一个循环神经网络(RNN),一共包含两部分。你可以在以下链接找到完整内容。(一)线性循环神经网络(RNN)(二)非线性循环神经网络(RNN)非线性循环神...原创 2018-05-20 22:09:34 · 472 阅读 · 0 评论 -
(二)神经网络入门之Logistic回归(分类问题)
作者:chen_h 微信号 & QQ:862251340 微信公众号:coderpai 这篇教程是翻译Peter Roelants写的神经网络教程,作者已经授权翻译,这是原文。该教程将介绍如何入门神经网络,一共包含五部分。你可以在以下链接找到完整内容。(一)神经网络入门之线性回归Logistic分类函数(二)神经网络入门之Logistic回归(分类问题)...原创 2018-05-20 22:09:53 · 390 阅读 · 0 评论 -
(三)神经网络入门之隐藏层设计
作者:chen_h 微信号 & QQ:862251340 微信公众号:coderpai 这篇教程是翻译Peter Roelants写的神经网络教程,作者已经授权翻译,这是原文。该教程将介绍如何入门神经网络,一共包含五部分。你可以在以下链接找到完整内容。(一)神经网络入门之线性回归Logistic分类函数(二)神经网络入门之Logistic回归(分类问题)...原创 2018-05-20 22:10:15 · 1230 阅读 · 0 评论 -
(四)神经网络入门之矢量化
作者:chen_h 微信号 & QQ:862251340 微信公众号:coderpai 这篇教程是翻译Peter Roelants写的神经网络教程,作者已经授权翻译,这是原文。该教程将介绍如何入门神经网络,一共包含五部分。你可以在以下链接找到完整内容。(一)神经网络入门之线性回归Logistic分类函数(二)神经网络入门之Logistic回归(分类问题)...原创 2018-05-20 22:10:39 · 980 阅读 · 0 评论 -
(五)神经网络入门之构建多层网络
作者:chen_h 微信号 & QQ:862251340 微信公众号:coderpai 这篇教程是翻译Peter Roelants写的神经网络教程,作者已经授权翻译,这是原文。该教程将介绍如何入门神经网络,一共包含五部分。你可以在以下链接找到完整内容。(一)神经网络入门之线性回归Logistic分类函数(二)神经网络入门之Logistic回归(分类问题)...原创 2018-05-20 22:11:01 · 1476 阅读 · 0 评论 -
(一)神经网络入门之线性回归
作者:chen_h 微信号 & QQ:862251340 微信公众号:coderpai 这篇教程是翻译Peter Roelants写的神经网络教程,作者已经授权翻译,这是原文。该教程将介绍如何入门神经网络,一共包含五部分。你可以在以下链接找到完整内容。(一)神经网络入门之线性回归Logistic分类函数(二)神经网络入门之Logistic回归(分类问题)...原创 2018-05-20 22:11:19 · 2348 阅读 · 0 评论 -
(一)线性循环神经网络(RNN)
作者:chen_h 微信号 & QQ:862251340 微信公众号:coderpai 这篇教程是翻译Peter Roelants写的循环神经网络教程,作者已经授权翻译,这是原文。该教程将介绍如何实现一个循环神经网络(RNN),一共包含两部分。你可以在以下链接找到完整内容。(一)线性循环神经网络(RNN)(二)非线性循环神经网络(RNN)这篇教程中的...原创 2018-05-22 12:09:46 · 644 阅读 · 0 评论 -
Python入门深度学习完整指南
介绍深度学习目前已经成为了人工智能领域的突出话题。它在“计算机视觉”和游戏(AlphaGo)等领域的突出表现而闻名,甚至超越了人类的能力。近几年对深度学习的关注度也在不断上升,这里有一个调查结果可以参考。这里有一个 Google 的搜索趋势图:如果你对这个话题感兴趣,这里有一个很好的非技术性的介绍。如果你有兴趣了解最近的趋势,那么这里有一个很好的汇总。在这篇文章中,我们的目标是为所有深度学习的人提供翻译 2017-04-12 19:28:41 · 9628 阅读 · 0 评论