通过HeidiSQL向表中导入EXCEL数据

情况描述

HeidiSQL管理数据库很方便,但是一条条添加数据比较麻烦。可以先利用Excel文件生成CSV格式数据,然后再进行导入。这样相对来说比较方便。

具体操作

1.打开Excel,写入数据。

列名不一定要和表中的字段名称相同,但是顺序要一样,不然导入的时候数据会出现错误。这里写上列名也是方便自己看。如果数据库里标明了不允许NULL,那就一定要完善数据

补充数据

2.另存为CSV格式

3.回到HeidiSQL界面,工具栏点开“导入CSV文件”

4.导入文本文件

忽略第一行(因为是表头),字段分隔符改为,号,方式改为客户端解析数据。

5.成功导入!

### 如何将 Excel 文件的数据导入 HeidiSQL 为了实现将 Excel 数据导入HeidiSQL 中,通常需要经过以下几个方面的工作流程: #### 1. 将 Excel 转换为 CSV 格式 Excel 文件本身并不被大多数数据库工具直接支持,因此需要将其转换为更通用的格式,即 **CSV (Comma-Separated Values)**。可以通过以下方式完成此操作: - 打开 Excel 文件并保存为 CSV 格式文件[^1]。 - 如果生成的 CSV 使用分号作为分隔符而不是逗号,则需手动调整设置以匹配数据库的要求[^3]。 #### 2. 配置 HeidiSQL 进行 CSV 导入 HeidiSQL 提供了一个便捷的功能来处理外部数据源的导入工作。具体的操作如下: - 在 HeidiSQL 主界面中选择目标数据库所在的连接项。 - 点击顶部菜单栏中的 `工具` -> `导入 .csv 文件...`[^2]。 - 浏览定位之前准备好的 CSV 文件路径,并确认其编码以及字段分割字符是否正确配置(通常是逗号或自定义符号)。 #### 3. 设置映射关系与执行导入 当选择了合适的 CSV 文件后,还需要进一步设定一些参数以便顺利完成数据迁移过程: - 对应每一列的目标字段名应该准确无误地指定给定格内的相应位置。 - 可视化预览窗口可以帮助验证即将写入的内容是否有潜在错误存在。 - 完成上述准备工作之后即可按下按钮正式开始传输动作[^4]。 以下是用于演示整个过程中可能涉及的一段 Python 脚本样例代码片段用来辅助批量自动化任务场景下模拟类似功能逻辑: ```python import pandas as pd from sqlalchemy import create_engine # 加载原始 excel 数据至 DataFrame 结构对象当中去. df = pd.read_excel('source_file.xlsx') # 创建引擎实例链接远程 mysql server 实例地址信息等等... engine = create_engine('mysql+pymysql://username:password@host/dbname') # 利用 to_sql 方法把 dataframe 写回到 sql 格里头去. df.to_sql(name='target_table', con=engine, if_exists='append', index=False) ``` 以上就是关于如何借助第三方应用程序比如 heidisql 来快速有效地达成从微软办公套件成员之一 excekle sheet 向关系型数据库管理系统 rdbms 移植记录集合的目的指南说明文档内容总结概述部分结束语句标记处.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ayu阿予

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值