LeetCode-Maximum Subarray

最大子序列和问题

1. 题目描述

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
Example given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.


2. 解题思路

一开始觉得和滑动窗口一个问题,但是想不到一个终止的条件,然后发现只要是前面序列和小于0,就设置sum=0。

1. 直接求解O(n)-动态规划

maxSubArray(A, i) = maxSubArray(A, i - 1) >0 ? maxSubArray(A, i - 1) : 0 + A[i];

遍历一次数组,sum+=A[i],如果sum大于result,更新result,如果sum小于0,更新sum为0.

2. 利用分治的方法O(nlogn)

对于一数字序列,其最大连续子序列和对应的子序列可能出现在三个地方。

  • 整个出现在输入数据的前半部(左)
  • 整个出现在输入数据的后半部(右)
  • 跨越输入数据的中部从而占据左右两半部分。

前两种情况可以通过递归求解,第三种情况可以通过求出前半部分的最大和(包含前半部分的最后一个元素)以及后半部分的最大和(包含后半部分的第一个元素)而得到,然后将这两个和加在一起即可。
T(1) = 1
T(N) = 2T(N/2) + O(N)

3.代码

先贴一波分治的代码

public static int maxSubsequenceSum(int[] a, int left, int right) {
    if(left == right) { //Base case
        if(a[left] > 0) {
            return a[left];
        } else {
            return 0; //保证最小值为0
        }
    }

    int center = (left+right)/2;
    int maxLeftSum = maxSubsequenceSum(a, left, center); //递归调用,求左部分的最大和
    int maxRightSum = maxSubsequenceSum(a, center+1, right);//递归调用,求右部分的最大和

    int leftBorderSum = 0, maxLeftBorderSum = 0;//定义左边界子序列的和
    for(int i=center; i>=left; i--) {//求左边界的最大和(从右边开始往左求和)
        leftBorderSum += a[i];
        if(leftBorderSum > maxLeftBorderSum) {
            maxLeftBorderSum = leftBorderSum;
        }
    }

    int rightBorderSum = 0, maxRightBorderSum = 0;//定义右边界子序列的和
    for(int i=center+1; i<=right; i++) {//求右边界的最大和(从左边开始往右求和)
        rightBorderSum += a[i];
        if(rightBorderSum > maxRightBorderSum) {
            maxRightBorderSum = rightBorderSum;
        }
    }

    //选出这三者中的最大值并返回(max3(int a, int b, int c)的实现没有给出)
    return max3(maxLeftSum, maxRightSum, maxLeftBorderSum + maxRightBorderSum);
}

接下来就是动态规划的代码了

class Solution{
    public:
     int maxSubArray(vector<int>& nums) {
         int largest_num= nums.at(0);
         int sum=0;
         for(int i=0; i < nums.size(); i++) {
            sum+=nums.at(i);
            if(sum> largest_num) {
                largest_num=sum;
            } 
             if(sum < 0) 
              sum= 0;
         }
         return largest_num;
    }
};

表达比较明确,但是还不够短,discussion里面说到,可以把for循环里面的语句变成两条语句。
sum=max(sum+nums.at(i),A[i]);
largest_num=max(largest_num,sum);
感叹大佬的水平(膜)。

### LeetCode 刷题推荐列表与学习路径 在 LeetCode 上进行刷题时,制定一个合理的计划非常重要。以下是一个基于算法分类的学习路径和推荐题目列表[^1]: #### 学习路径 1. **基础算法理论** 在开始刷题之前,建议先通过视频或书籍了解基本的算法理论。例如,分治法、贪心算法、动态规划、二叉搜索树(BST)、图等概念[^1]。 2. **数据结构基础** 熟悉常见的数据结构,包括数组、链表、栈、队列、哈希表、树、图等。确保对这些数据结构的操作有深刻理解。 3. **分模块刷题** 按照以下顺序逐步深入: - 树:从简单的遍历问题(如前序、中序、后序遍历)开始,逐渐过渡到复杂问题(如二叉搜索树验证、平衡二叉树等)。 - 图与回溯算法:学习图的表示方法(邻接矩阵、邻接表),并练习深度优先搜索(DFS)和广度优先搜索(BFS)。结合回溯算法解决组合问题、排列问题等。 - 贪心算法:选择一些经典的贪心问题(如活动选择问题、区间覆盖问题)进行练习。 - 动态规划:从简单的 DP 问题(如爬楼梯、斐波那契数列)入手,逐步掌握状态转移方程的设计技巧。 4. **刷题策略** 刷题时优先选择简单或中等难度的题目,并关注通过率较高的题目。这有助于建立信心并巩固基础知识[^1]。 #### 推荐题目列表 以下是按算法分类的 LeetCode 题目推荐列表: 1. **树** - [104. 二叉树的最大深度](https://leetcode-cn.com/problems/maximum-depth-of-binary-tree/) - [94. 二叉树的中序遍历](https://leetcode-cn.com/problems/binary-tree-inorder-traversal/) - [236. 二叉树的最近公共祖先](https://leetcode-cn.com/problems/lowest-common-ancestor-of-a-binary-search-tree/) 2. **图与回溯** - [79. 单词搜索](https://leetcode-cn.com/problems/word-search/) - [51. N皇后](https://leetcode-cn.com/problems/n-queens/) - [78. 子集](https://leetcode-cn.com/problems/subsets/) 3. **贪心** - [455. 分发饼干](https://leetcode-cn.com/problems/assign-cookies/) - [135. 分发糖果](https://leetcode-cn.com/problems/candy/) - [406. 根据身高重建队列](https://leetcode-cn.com/problems/queue-reconstruction-by-height/) 4. **动态规划** - [70. 爬楼梯](https://leetcode-cn.com/problems/climbing-stairs/) - [53. 最大子数组和](https://leetcode-cn.com/problems/maximum-subarray/) - [300. 最长递增子序列](https://leetcode-cn.com/problems/longest-increasing-subsequence/) #### 示例代码 以下是一个简单的动态规划问题示例——“不同路径”[^3]: ```python def uniquePaths(m, n): dp = [[1] * n for _ in range(m)] for i in range(1, m): for j in range(1, n): dp[i][j] = dp[i-1][j] + dp[i][j-1] return dp[-1][-1] # 测试用例 print(uniquePaths(3, 2)) # 输出:3 ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值