LeetCode—Longest Substring Without Repeating Characters
1. 题目描述
Given a string, find the length of the longest substring without repeating characters.
Examples:
Given “abcabcbb”, the answer is “abc”, which the length is 3.
Given “bbbbb”, the answer is “b”, with the length of 1.
Given “pwwkew”, the answer is “wke”, with the length of 3. Note that the answer must be a substring, “pwke” is a subsequence and not a substring.
【典型的滑动窗口问题,总结以巩固一下】
2. 解题思路
Sliding Window(滑动窗口):滑动窗口问题一般题目会很典型,要求我们一直维护一个size为k的window,然后do some operation/calculate something within that window。基本思路就是每次不管三七二十一先把当前新的元素加进来,然后如果有需要(比如有元素过期了)移除出来,这时我们可以确保现在maintain的是一个valid window。真正的logic happens here。
步骤:
- 一定先加进元素,这里add operation是每个元素都要加的
- 再移除元素,这里移除是需要满足condition的,只有有元素过期的情况下,才去remove
- 进行calculation,这里进行计算也是需要满足condition的,至于形成一个valid的window之后才可以开始计算,如果窗口还不够size,此时不应该进行计算。
3. 实际解决思路
我们使用HashSet将字符存储在当前窗口[i,j) [i,j]中。 然后我们将索引j向右滑动。 如果不在HashSet中,我们进一步滑动j。 这样做直到s [j]已经在HashSet中。 此时,我们发现从索引i开始没有重复字符的子串的最大大小。 如果我们为所有i这样做,我们得到我们的答案。
4. 代码
public class Solution {
public int lengthOfLongestSubstring(String s) {
int n = s.length();
Set<Character> set = new HashSet<>();
int ans = 0, i = 0, j = 0;
while (i < n && j < n) {
// try to extend the range [i, j]
if (!set.contains(s.charAt(j))){
set.add(s.charAt(j++));
ans = Math.max(ans, j - i);
}
else {
set.remove(s.charAt(i++));
}
}
return ans;
}
}
时间复杂度O(2n).
5.优化
实际上我们可以定义一个字符到其索引的映射。 然后,当我们发现重复的字符时,我们可以立即跳过这些字符。
public class Solution {
public int lengthOfLongestSubstring(String s) {
int n = s.length(), ans = 0;
Map<Character, Integer> map = new HashMap<>(); // current index of character
// try to extend the range [i, j]
for (int j = 0, i = 0; j < n; j++) {
if (map.containsKey(s.charAt(j))) {
i = Math.max(map.get(s.charAt(j)), i);
}
ans = Math.max(ans, j - i + 1);
map.put(s.charAt(j), j + 1);
}
return ans;
}
}
时间复杂度O(n).
6.总结
从遍历每一个子字符串,判断每个字符串的valid,求最大(O(n^3))到利用set一次遍历找到以s[i]开头的最大字符串,优化到利用hashMap,时间复杂度依次减少,所以遇到sliding windows 的时候要选择正确的容器(set,stack,heap,map,queue)。
找到相似问题的联系,链接奉上。
- Leetcode 295. Find Median from Data Stream
- Leetcode 360. Sliding Window Median
- Leetcode 239. Sliding Window Maximum
- [LintCode 558. Sliding Window Matrix Maximum]
- [Leetcode 362. Design Hit Counter]
(链接持续更新,欢迎补充)