Java可重入锁(GPT编写)

16 篇文章 0 订阅

Java可重入锁是Java并发编程中常用的一种锁机制,它可以允许同一个线程多次获取同一个锁,从而避免死锁和其他并发问题。在本篇博客中,我们将对Java可重入锁的源码进行分析,以便更好地理解它的实现原理和使用方法。

Java可重入锁的实现原理

Java可重入锁的实现基于AQS(AbstractQueuedSynchronizer)框架,它是Java并发包中的一个重要组件。AQS框架提供了一种通用的同步机制,可以用于实现各种锁和同步器。Java可重入锁就是基于AQS框架实现的。

Java可重入锁的实现主要包括以下几个部分:

锁状态

Java可重入锁的状态由一个整型变量state表示,它表示锁的持有次数。当state为0时,表示锁没有被任何线程持有;当state大于0时,表示锁被某个线程持有,且持有次数为state。

获取锁

当一个线程尝试获取Java可重入锁时,它会首先尝试获取锁的状态。如果state为0,则表示锁没有被任何线程持有,此时该线程可以直接获取锁,并将state设置为1。如果state大于0,则表示锁已经被某个线程持有,此时需要判断持有锁的线程是否为当前线程。如果是当前线程,则可以直接获取锁,并将state加1;如果不是当前线程,则需要将当前线程加入等待队列,并等待锁的释放。

释放锁

当一个线程释放Java可重入锁时,它会将锁的状态state减1。如果state减为0,则表示锁已经完全释放,此时需要唤醒等待队列中的一个线程,让它获取锁。如果state仍然大于0,则表示锁还被某个线程持有,此时只需要将state减1即可。

可重入性

Java可重入锁支持可重入性,即同一个线程可以多次获取同一个锁,而不会造成死锁或其他并发问题。实现可重入性的关键在于,每个线程需要记录自己已经获取锁的次数,以便在释放锁时正确地减少锁的持有次数。

Java可重入锁的源码分析

下面我们来看一下Java可重入锁的源码实现。Java可重入锁的主要实现类是ReentrantLock,它继承了AQS框架的抽象类AbstractQueuedSynchronizer。

锁状态

Java可重入锁的状态由一个整型变量state表示,它定义在AbstractQueuedSynchronizer类中:

private volatile int state;

获取锁

当一个线程尝试获取Java可重入锁时,它会调用tryAcquire方法。该方法首先会判断锁的状态state是否为0,如果是,则表示锁没有被任何线程持有,此时可以直接获取锁,并将state设置为1。如果state不为0,则需要判断持有锁的线程是否为当前线程。如果是当前线程,则可以直接获取锁,并将state加1;如果不是当前线程,则需要将当前线程加入等待队列,并等待锁的释放。

protected final boolean tryAcquire(int acquires) {
    Thread current = Thread.currentThread();
    int c = getState();
    if (c == 0) {
        if (compareAndSetState(0, acquires)) {
            setExclusiveOwnerThread(current);
            return true;
        }
    } else if (current == getExclusiveOwnerThread()) {
        int nextc = c + acquires;
        if (nextc < 0) // overflow
            throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
    }
    return false;
}

释放锁

当一个线程释放Java可重入锁时,它会调用tryRelease方法。该方法会将锁的状态state减1。如果state减为0,则表示锁已经完全释放,此时需要唤醒等待队列中的一个线程,让它获取锁。如果state仍然大于0,则表示锁还被某个线程持有,此时只需要将state减1即可。

protected final boolean tryRelease(int releases) {
    int c = getState() - releases;
    if (Thread.currentThread() != getExclusiveOwnerThread())
        throw new IllegalMonitorStateException();
    boolean free = false;
    if (c == 0) {
        free = true;
        setExclusiveOwnerThread(null);
    }
    setState(c);
    return free;
}

可重入性

Java可重入锁支持可重入性,即同一个线程可以多次获取同一个锁,而不会造成死锁或其他并发问题。实现可重入性的关键在于,每个线程需要记录自己已经获取锁的次数,以便在释放锁时正确地减少锁的持有次数。Java可重入锁通过ThreadLocal变量来记录每个线程已经获取锁的次数。

private static final class HoldCounter {
    int count = 0;
    final long tid = getThreadId(Thread.currentThread());
}

private transient ThreadLocal<HoldCounter> holdCounts = new ThreadLocal<HoldCounter>();

private int getHoldCount() {
    HoldCounter rh = holdCounts.get();
    return (rh == null) ? 0 : rh.count;
}

private void setHoldCount(int count) {
    HoldCounter rh = holdCounts.get();
    if (rh == null) {
        rh = new HoldCounter();
        holdCounts.set(rh);
    }
    rh.count = count;
}

总结

Java可重入锁是Java并发编程中常用的一种锁机制,它可以允许同一个线程多次获取同一个锁,从而避免死锁和其他并发问题。Java可重入锁的实现基于AQS框架,它通过状态变量state和等待队列来实现锁的获取和释放。Java可重入锁支持可重入性,即同一个线程可以多次获取同一个锁,而不会造成死锁或其他并发问题。

好的,我可以提供一个Java和Azure实现GPT画图接口的示例代码。在这个示例中,我们将使用Azure的Functions服务来实现接口,并使用Java编写函数代码。 首先,您需要创建一个Azure Functions项目并添加以下依赖项: ``` <dependency> <groupId>com.microsoft.azure.functions</groupId> <artifactId>azure-functions-java-library</artifactId> <version>1.4.0</version> </dependency> <dependency> <groupId>com.microsoft.azure</groupId> <artifactId>azure-storage</artifactId> <version>8.6.4</version> </dependency> ``` 接下来,您可以编写一个函数来实现GPT画图接口。以下是一个示例代码: ``` import com.microsoft.azure.functions.annotation.*; import com.microsoft.azure.functions.*; import java.awt.*; import java.awt.image.BufferedImage; import java.io.ByteArrayOutputStream; import java.io.IOException; import java.net.URISyntaxException; import java.security.InvalidKeyException; import java.util.*; import java.util.List; import javax.imageio.ImageIO; import com.microsoft.azure.storage.*; import com.microsoft.azure.storage.blob.*; import ai.djl.Model; import ai.djl.ModelException; import ai.djl.inference.Predictor; import ai.djl.modality.Classifications; import ai.djl.modality.Input; import ai.djl.modality.Output; import ai.djl.ndarray.*; import ai.djl.translate.*; import ai.djl.training.util.ProgressBar; public class GPTDraw { @FunctionName("gpt-draw") public HttpResponseMessage run( @HttpTrigger(name = "req", methods = {HttpMethod.GET, HttpMethod.POST}, authLevel = AuthorizationLevel.ANONYMOUS) HttpRequestMessage<Optional<String>> request, final ExecutionContext context) throws InvalidKeyException, URISyntaxException, StorageException, IOException, ModelException { // 获取请求参数 String text = request.getBody().orElse(""); String style = request.getHeaders().getOrDefault("X-Style", "default"); // 加载模型 String modelPath = "model/gpt_" + style; Model model = Model.newInstance("GPT"); model.setBlock(new GPTBlock()); model.load(model.getNDManager(), modelPath); // 推理 Translator<NDList, NDList> translator = new GPTTranslator(); Predictor<NDList, NDList> predictor = model.newPredictor(translator); NDList output = predictor.predict(new NDList(NDArray.empty(0))); output = predictor.predict(new NDList(NDArray.array(text))); String result = output.singletonOrThrow().toString(); // 生成图片 int width = 600; int height = 300; BufferedImage image = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB); Graphics2D g = image.createGraphics(); g.setColor(Color.WHITE); g.fillRect(0, 0, width, height); g.setColor(Color.BLACK); g.setFont(new Font("Arial", Font.PLAIN, 24)); List<String> lines = splitText(result, 30); int lineHeight = 30; int y = (height - lines.size() * lineHeight) / 2; for (String line : lines) { g.drawString(line, 10, y); y += lineHeight; } // 上传图片到Azure Blob存储 String connectionString = System.getenv("AzureWebJobsStorage"); CloudStorageAccount storageAccount = CloudStorageAccount.parse(connectionString); CloudBlobClient blobClient = storageAccount.createCloudBlobClient(); CloudBlobContainer container = blobClient.getContainerReference("images"); container.createIfNotExists(BlobContainerPublicAccessType.CONTAINER, new BlobRequestOptions(), new OperationContext()); CloudBlockBlob blob = container.getBlockBlobReference(UUID.randomUUID().toString() + ".png"); ByteArrayOutputStream outputStream = new ByteArrayOutputStream(); ImageIO.write(image, "png", outputStream); outputStream.flush(); byte[] data = outputStream.toByteArray(); blob.uploadFromByteArray(data, 0, data.length); // 构造响应 HttpResponseMessage response = request.createResponseBuilder(HttpStatus.OK) .header("Content-Type", "text/plain") .body(blob.getUri().toString()) .build(); return response; } private List<String> splitText(String text, int maxLength) { List<String> lines = new ArrayList<>(); int length = 0; StringBuilder sb = new StringBuilder(); for (String word : text.split(" ")) { if (length + word.length() + 1 > maxLength) { lines.add(sb.toString()); sb = new StringBuilder(); length = 0; } sb.append(word).append(" "); length += word.length() + 1; } if (sb.length() > 0) { lines.add(sb.toString()); } return lines; } } ``` 在上面的代码中,我们首先获取请求参数(文本和样式),然后加载GPT模型并进行推理。接下来,我们使用Java的AWT库生成一个图片,并将其上传到Azure Blob存储中。最后,我们构造一个响应并返回它。 希望这可以回答您的问题!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值